The Architect’s Role in Sustainable Design (and How to Use Technology & Innovation to Advance Our Green Agenda) #ilmaBlog #green #design #architecture

Background

In the design and construction field, there are two major categories of resources: renewable and non-renewable. As opposed to non-renewable resources, which are depleted with their constant use, renewable resources are not. If not managed properly Non-renewable resources might become non-existent when the rate at which they are used is much higher than the rate at which they are replaced. Renewable resources include water, geothermal energy and wind energy. Non-renewable resources include coal, natural gas and oil.  The demand for new construction is on the rise as the world’s population increases and the demand for newer, more efficient modern buildings also increase.

Architect’s Role

Because buildings account for so much energy to build and maintain, architects and designers have become very conscious about our role in minimizing our environmental footprint when we design buildings.  The American Institute of Architects, the largest organization of architects world-wide has a committee called the Committee on the Environment (COTE), which works to advance, disseminate, and advocate—to the profession, the building industry, the academy, and the public—design practices that integrate built and natural systems and enhance both the design quality and environmental performance of the built environment. COTE serves as the community and voice on behalf of AIA architects regarding sustainable design and building science and performance.

Bamboo

Renewable Resources

In green construction processes, there is an emphasis on the use of renewable resources. In many cases, this natural source becomes depleted much faster than it is able to replenish itself, therefore, it has become important that buildings make use of alternative water sources for heating, hot water and sewerage disposal throughout their life cycles, to reduce use and conserve water supplies.

Architects and designers specify rapidly renewable materials are those that regenerate more quickly than their level of demand. Our goal is to reduce the use and depletion of finite raw materials and long-cycle renewable materials by replacing them with rapidly renewable ones.  Some commonly specified rapidly renewable materials include cork, bamboo, cotton batt insulation, linoleum flooring, sunflower seed board panels, wheat-board cabinetry, wool carpeting, cork flooring, bio-based paints, geotextile fabrics such as coir and jute, soy-based insulation and form-release agent and straw bales. Some green building materials products are made of a merger of rapidly renewable materials and recycled content such as newsprint, cotton, soy-based materials, seed husks, etc.

Check out this ILMA article about “Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design” for more information on this topic.

Responsibility of Architects

Architects and designers who align with AIA’s COTE objectives, (1) recognize the value of their role in environmental leadership to advance the importance of sustainable design to the general public while incorporating sustainable design into their daily practice, (2) influence the direction of architectural education to place more emphasis on ecological literacy, sustainable design and building science, (3) communicate the AIA’s environmental and energy-related concerns to the public and private sectors and influence the decisions of the public, professionals, clients, and public officials on the impact of their environmental and energy-related decisions, (4) educate other architects on regulatory, performance, technical and building science issues and how those issues influence architecture, (5) educate the architectural profession on programming, designing, and managing building performance, (6) investigate and disseminate information regarding building performance best practices, criteria, measurement methods, planning tools, occupant-comfort, heat/air/moisture interfaces between the interior and exterior of buildings, (7) promote a more integrated practice in order to achieve environmentally and economically efficient buildings. One of the tools we will plan to promote to achieve this integration is Building Information Technology (BIM).

Smart-Building

The Role of Technology & Innovation – A Case Study (“The Edge”)

PLP Architecture and the Developer OVG Real Estate, built “The Edge” is a 430,556 SF (40,000m²) office building in the Zuidas business district in Amsterdam. It was designed for the global financial firm and main tenant, Deloitte. The project aimed to consolidate Deloitte’s employees from multiple buildings throughout the city into a single environment, and to create a ‘smart building’ to act as a catalyst for Deloitte’s transition into the digital age.

They key features of this building include the following innovations which address the environmental impact of building such a large edifice:

  • Each facade is uniquely detailed according to its orientation and purpose.
    • Load bearing walls to the south, east and west have smaller openings to provide thermal mass and shading, and solid openable panels for ventilation.
    • Louvers on the south facades are designed according to sun angles and provide additional shading for the office spaces, reducing solar heat gain.
    • Solar panels on the south facade provide enough sustainable electricity to power all smartphones, laptops and electric cars.
    • The North facades are highly transparent and use thicker glass to dampen noise from the motorway.
    • The Atrium façade is totally transparent, allowing views out over the dyke, and steady north light in.
  • The building’s Ethernet-powered LED lighting system is integrated with 30,000 sensors to continuously measure occupancy, movement, lighting levels, humidity and temperature, allowing it to automatically adjust energy use.
  • 65,000 SF of solar panels are located on the facades and roof, and remotely on the roofs of buildings of the University of Amsterdam – thereby making use of neighborhood level energy sourcing.
  • The atrium acts as a buffer between the workspace and the external environment. Excess ventilation air from the offices is used again to air condition the atrium space. The air is then ventilated back out through the top of the atrium where it passes through a heat exchanger to make use of any warmth.
  • Rain water is collected on the roof and used to flush toilets and irrigate the green terraces in the atrium and other garden areas surrounding the building.
  • Two thermal energy wells reach down to an aquifer, allowing thermal energy differentials to be stored deep underground.
  • In The Edge a new LED-lighting system has been co-developed with Philips. The Light over Ethernet (LoE) LED system is powered by Ethernet and 100% IP based. This makes the system (i.e. each luminaire individually) computer controllable, so that changes can be implemented quickly and easily without opening suspended ceilings. The luminaires are furthermore equipped with Philips’ ‘coded-light’ system allowing for a highly precise localization via smartphone down to 8 inches (20 cm) accuracy, much more precise than known WiFi or beacon systems.
  • Around 6,000 of these luminaires were placed in The Edge with every second luminaire being equipped with an additional multi-sensor to detect movement, light, infrared and temperature.
  • The Philips LoE LED system was used in all office spaces to reduce the energy requirement by around 50% compared to conventional TL-5 Lighting. Via the LoE system daily building use can be monitored. This data is fed to facility managers via the BMS allowing:
    • Remote insight into the presence of people in the building (anonymous). Heating, cooling, fresh air and lighting are fully IoT (Internet of Things) integrated and BMS controlled per 200 sqft based on occupancy – with zero occupancy there is next-to-zero energy use.
    • Predictions of occupancy at lunchtime based on real time historical data and traffic and weather information to avoid food-waste.
    • Unused rooms to be skipped for cleaning.
    • Managers to be alerted to lights that need replacing.
    • Notification of printers needing paper.
  • Every employee is connected to the building via an app on their smartphone. Using the app they can find parking spaces, free desks or other colleagues, report issues to the facilities team, or even navigate within the building.
  • Employees can customize the temperature and light levels anywhere they choose to work in the building via the mobile app. The app remembers how they like their coffee, and tracks their energy use so they’re aware of it.
  • The vast amount of data generated by the building’s digital systems and the mobile app on everything from energy use to working patterns, has huge potential for informing not only Deloitte’s own operations, but also our understanding of working environments as a whole. Discussions are currently ongoing regarding the future of this data and its use for research and knowledge transfer.
  • The green space that separates the building from the nearby motorway acts as an ecological corridor, allowing animals and insects cross the site safely.

Conclusion

Because buildings account for nearly 40 percent of global energy consumption, architects and designers have been working to impact the built environment in a positive way.  Although not every project can be as green as The Edge, by selecting materials that are renewable while reducing energy are two big contributions we can make to help ease the increasing demand for construction.

Technology can play a big part in our role to design more sustainable buildings through the use of building information modeling, energy management software, building management software, online sustainability calculators, energy modeling software, new lighting innovations, new techniques to capture and deliver energy and clean water while reducing waste, and mobile applications utilizing IoT.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook

 


The History of Western Architecture in Photos

This slideshow requires JavaScript.

Happy Friday and enjoy the brief history lesson!

Prehistoric Times: Stonehenge in Amesbury, United Kingdom
Jason Hawkes/Getty Images

Ancient Egypt: The Pyramid of Khafre (Chephren) in Giza, Egypt
Lansbricae (Luis Leclere)/Getty Images (cropped)

Classical: The Pantheon, Rome
Werner Forman Archive/Heritage Images/Getty Images (cropped)

Byzantine: Church of Hagia Eirene, Istanbul, Turkey
Salvator Barki/Getty Images (cropped)

Romanesque: Basilica of St. Sernin, Toulouse, France
Anger O./AgenceImages courtesy Getty Images

Gothic: Notre Dame de Chartres, France
Alessandro Vannini/Getty Images (cropped)

Renaissance: Villa Rotonda (Villa Almerico-Capra), near Venice, Italy
Massimo Maria Canevarolo via Wikimedia Commons

Baroque: Palace of Versailles, France
Loop Images Tiara Anggamulia/Getty Images (cropped)

Rococo: Catherine Palace near Saint Petersburg, Russia
Sean Gallup/Getty Images

Neoclassicism: The U.S. Capitol in Washington, D.C.
Architect of the Capitol

Art Nouveau: Hôtel Lutetia, 1910, Paris, France
Justin Lorget/chesnot/Corbis via Getty Images

Beaux Arts: The Paris Opéra, Paris, France
Francisco Andrade/Getty Images (cropped)

Neo-Gothic: The 1924 Tribune Tower in Chicago
Glowimage/Getty Images (cropped)

Art Deco: The 1930 Chrysler Building in New York City
CreativeDream/Getty Images

Modernism: De La Warr Pavilion, 1935, Bexhill on Sea, East Sussex, U.K.
Peter Thompson Heritage Images/Getty Images

Postmodernism: Celebration Place, Celebration, Florida
Jackie Craven

Neo-Modernism and Parametricism: Heydar Aliyev Centre, 2012, Baku, Azerbaijan
Christopher Lee/Getty Images

Prehistoric to Parametric: Prehistoric Stonehenge (left) and Moshe Safdie’s 2011 Marina Bay Sands Resort in Singapore (right)
Left: Grant Faint / Right: photo by William Cho

(Source: Craven, Jackie. “Architecture Timeline – Western Influences on Building Design.” ThoughtCo, Apr. 21, 2018, thoughtco.com/architecture-timeline-historic-periods-styles-175996)

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What is the Role of the Architect in the Future of AR Design?

Never before in the modern history of technology has the architect, the designer, been a more important part of technology’s future. Architects have been curating and ideating on the development of ‘place’ for centuries. Gensler covers how they are leveraging AR in the coverage of AI, the Internet of Things, and Cloud computing, and how to design places using game engine technology.

Speaker: Alan Robles of Gensler

Over 24 years exploring the relationship between users and their surroundings, Alan’s been creating experience environments for clients and projects of every scale around the world. In his role at Gensler he explores the opportunities found at the fringes of the design practice, searching for the edges of the play space of each design opportunity.

(Source: bit.ly/visionsummit17)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Drywall Installation & Masonry Installation…. by Robots

A while back ILMABlog did a series on Technology in Architecture & Construction.

More recently we just discovered the latest technology coming from Japan.  Researchers at Japan’s Advanced Industrial Science and Technology Institute have built HRP-5P, a humanoid bot prototype, reported Engadget.

The bot combines environmental detection, object recognition and careful movement planning to install drywall independently, including hoisting boards and fastening them with screwdrivers. To make up for its lack of movement compared to a human, HRP-5P has numerous joints that flex to degrees people are unable to. It also can correct for slips and is capable of fields of view beyond that of a human worker’s.

The team hopes to collaborate with private companies that will treat the bot as a development platform and lead to further breakthroughs. The robot is meant to tackle the “manual shortages” Japan is facing, AIST also posits, and will allow the limited pool of human workers to focus on lighter, less dangerous work.​


fc293530d98b5fcb5662c41518f298cf

(Sources: https://www.constructiondive.com/news/japanese-researchers-create-humanoid-bot-that-installs-drywall-independentl/538678 & https://www.engadget.com/2018/10/01/aist-humanoid-robot-installs-drywall)


SAM100 is a bricklaying robot for onsite masonry construction. Designed to work with the mason, assisting with the repetitive and strenuous task of lifting and placing each brick. The mason will continue to own the site setup and final wall quality but will improve efficiency through the operation of SAM.

(Source: https://www.construction-robotics.com/sam100/)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Prototyping Future Worlds with Futurist Architect Filmmaker @Liam_Young featured on Mind & Machine Podcast with Host @AugustBradley #Technology #Art #Film #ilmaBlog

Earlier this week I heard a great podcast on Mind & Machine, hosted by August Bradley I wanted to share with you.
MIND & MACHINE: Future Technology, Futurist Ideas (Published on Apr 9, 2018)

Liam Young, Speculative Architect, Futurist, Sci-fi Shaper, Extreme Explorer, Provocateur, Technology Storyteller, who uses his design background combined with experience in crafting environments to prototype new worlds — worlds that reveal unexpected aspects of how we live today and how we will live in the future. Liam teaches speculative architecture and world building at Sci Arc, a leading architecture school. He founded Unknown Fields, a nomadic studio documenting expeditions to the ends of the earth, exploring unusual forgotten landscapes, and obsolete ecologies. And Liam has co-founded Tomorrows Thoughts Today, a futures think tank envisioning fantastic speculative urban settings of tomorrow.
Podcast version at: https://is.gd/MM_on_iTunes

More about and from Liam at:

http://www.propela.co.uk/liamyoung
MIND & MACHINE features interviews by August Bradley with leaders in transformational technologies.
Twitter: https://twitter.com/augustbradley
Instagram: http://www.instagram.com/mindandmachine
Website: https://www.MindAndMachine.io

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook

 


History, Revolution‬, Artificial Intelligence and the Future of Architecture Featuring ‪@DuoDickinson‬ via @EntreArchitect [Updated]

This post was revised to include a weblink to a subsequent follow up podcast which was equally brilliant.A few weeks ago I heard a great podcast on EntreArchitect about Artificial Intelligence and the Future of Architecture.
Find Duo online at DuoDickinson.com and check out his blog Saved by Design or follow him on Facebook and Twitter.

FREE DOWNLOAD AUDIO – Part 1

FREE DOWNLOAD AUDIO – Part 2

(Source: https://entrearchitect.com/podcast/artificial-intelligence-and-the-future-of-architecture and https://entrearchitect.com/podcast/history-revolution-future-architecture/)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Top 20: Technology & Innovation Ideas For Architects

Thank you for all the support and encouragement over the years.  Here are some of our favorite blog posts about technology and innovation related to the field of Architecture:

  1. High Performance Building Design
  2. 3-D Printing
  3. Connected Spaces
  4. Benefits of Using Digital Twins for Construction
  5. Digital Twins
  6. Drone Technology
  7. Artificial Intelligence
  8. Immersive Experience in Architecture
  9. Smart Cities
  10. Big Data in Architecture
  11. Creating High Performance Buildings through Integrative Design Process
  12. Forget Blueprints, Now You Can Print the Building
  13. The 7 Dimensions of Building Information Modeling
  14. Parametric Architecture and Generative Design System
  15. Architecture Robots
  16. Internet of Spaces
  17. Sustainable Design Elements to Consider While Designing a Project
  18. What is a High Performance School?
  19. What is BIM? Should Your Firm Upgrade? by @FrankCunhaIII
  20. Renewable Wave Power Energy

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook