13 Examples of Green Architecture

The Morris & Gwendolyn Cafritz Foundation Environmental Center

The nickname for the Morris and Gwendolyn Cafritz Foundation Environmental Center is the Grass Building, and it perfectly captures its spirit. It’s a structure so thoughtfully designed it’s almost as energy-efficient and low impact as the greenery that surrounds it.

The Maryland building is part of an educational farm on the Potomac River Watershed that the Alice Ferguson Foundation used to teach people about the natural world. This new building—which became the 13th in the world to receive full Living Building Challenge certification in June 2017—is an educational facility designed to blur the lines between indoors and out, while still providing shelter as needed. “Part of the intent of the building is to be in the landscape and still have a bathroom to use,” says Scott Kelly, principal-in-charge at Re:Vision, a Philadelphia-based architecture and design studio.

Further Reading:
https://gbdmagazine.com/2017/grass-building
https://www.aia.org/showcases/92581-the-morris–gwendolyn-cafritz-foundation-env
https://living-future.org/lbc/case-studies/morris-gwendolyn-cafritz-foundation-environmental-center
http://hughloftingtimberframe.com/gallery/commercial/cafritz-foundation-environmental-center
http://www.cafritzfoundation.org/

Brock Environmental Center

Drawing thousands of students, the Brock Environmental Center is a regional hub for the Chesapeake Bay Foundation, in Virginia Beach, Virginia, supporting its education and wetlands restoration initiatives. A connection to nature defines the building’s siting, which provides sweeping views of the marsh and also anticipates sea-level rise and storm surges with its raised design. Parts were sourced from salvage: Its maple floors once belonged to a local gymnasium while school bleachers, complete with graffiti, were used for interior wood trim. The center was recognized for its positive footprint: It has composting toilets, captures and treats rainfall for use as drinking water, and produces 80 percent more energy than it uses, selling the excess to the grid.

Further Reading:
http://www.cbf.org/about-cbf/locations/virginia/facilities/brock-environmental-center
https://living-future.org/lbc/case-studies/the-chesapeake-bay-brock-environmental-center
https://www.visitvirginiabeach.com/listing/chesapeake-bay-foundations-brock-environmental-center/979
https://www.aia.org/showcases/76311-brock-environmental-center

Discovery Elementary School

Students have three distinct, age-appropriate playgrounds—with natural elements such as rocks and fallen trees—at Arlington, Virginia’s Discovery Elementary School. The name honors astronaut John Glenn, who returned to space on the Discovery shuttle and once lived in the neighborhood. Exploration is a theme at the school, whose interior focuses on forests, oceans, atmosphere, and the solar system. The largest zero-energy school in the country, it offers “hands-on learning around energy efficiency and generation,” jurors noted. The school maximizes natural light and provides views to the outside in all classrooms.

Further Reading:
https://www.aia.org/showcases/71481-discovery-elementary-school-
https://www.aiadc.com/sites/default/files/031%20-%20DiscoveryElementarySchool.pdf
https://www.google.com/search?q=Discovery+Elementary+School+AIA&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjS-pnHo6LcAhUMON8KHSlUDlYQsAQIdA&biw=1583&bih=1187

Bristol Community College

A laboratory is an energy-intensive enterprise, with specialized lighting and ventilation needs. That’s why jurors praised the airy health and science building at Bristol Community College, in Fall River, Massachusetts, for its net-zero energy achievement, “a difficult feat,” they noted, “in a cold climate like New England’s.” The move saves $103,000 in annual operating costs and allows the college, which offers a suite of courses in sustainability and energy, to practice what it teaches. Part of a holistic campus redesign, the new building’s location increases the density—and thus walkability—of campus for students.

Further Reading:
https://www.aia.org/showcases/71576-bristol-community-college-john-j-sbrega-heal
https://www.mass.gov/service-details/bristol-community-college-john-j-sbrega-health-and-science-building
http://www.architectmagazine.com/project-gallery/bristol-community-college-john-j-sbrega-health-and-science-building_o

Central Energy Facility

Orange and red pipes flaunt their role in “heat recovery” at Stanford University’s Central Energy Facility. The center for powering the California campus—more than a thousand buildings—the facility was transformed from an aging gas-fired plant to one fueled mostly by an off-site solar farm, fulfilling a goal of carbon neutrality and reducing energy use by a third. With large health care and research buildings, the campus needs as much heating as cooling; now a unique recovery system taps heat created in cooling processes to supply 93 percent of the heating and hot water required for campus buildings. The plant reduces Stanford emissions by 68 percent and potable water usage by 18 percent, potentially saving millions of dollars and one of the state’s scarce resources.

Further Reading:
https://www.aia.org/showcases/25976-stanford-university-central-energy-facility
https://sustainable.stanford.edu/new-system
https://www.archdaily.com/786168/stanford-university-central-energy-facility-zgf-architects
https://www.zgf.com/project/stanford-university-central-energy-facility

Ng Teng Fong General Hospital

Like other buildings in Singapore, Ng Teng Fong General Hospital incorporates parks, green roofs, and vertical plantings throughout its campus. But the city-state’s hospitals haven’t traditionally offered direct access to fresh air, light, and outdoor views. This hospital marks a dramatic change, optimizing each for patients. About 70 percent of the facility is naturally ventilated and cooled by fans, cross-ventilation, and exterior shading, saving on precious water resources. The building uses 38 percent less energy than a typical hospital in the area.

Further Reading:
https://www.aia.org/showcases/76821-ng-teng-fong-general-hospital–jurong-commun
http://www.hok.com/about/news/2017/07/25/ng_teng_fong_general_international_academy_for_design_and_health_awards
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017/58f7c23ce58eceac31000615-aia-selects-top-10-most-sustainable-projects-of-2017-photo
http://www.topicarchitecture.com/articles/154396-how-modern-hospitals-recognize-the-impact-o

Eden Hall Farm, Chatham University

After receiving the donation of 388-acre Eden Hall Farm, 20 miles north, Pittsburgh’s Chatham University created a satellite campus centered around a sustainable living experiment. The university views the landscape—an agricultural area adjacent to an urban center—as critical to supporting cities of the future. The original buildings are complemented by new facilities for 250 residential students (and eventually 1,200), including a dormitory, greenhouse, dining commons, and classrooms. Students get hands-on experience in renewable energy systems—the campus generates more than it uses—sustainable agriculture and aquaculture, waste treatment, and water management. Now home to the Falk School of Sustainability, the farm is producing the next generation of environmental stewards, who follow in the footsteps of alum Rachel Carson.

Further Reading:
https://www.aia.org/showcases/76481-chatham-university-eden-hall-campus
http://www.chatham.edu/news/index.php/2018/01/chatham-views/from-eden-hall-pioneer-to-farm-manager
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017
https://falk.chatham.edu/masterplan.cfm

Milken Institute School of Public Health, George Washington University

At George Washington University’s Milken Institute School of Public Health, located in the nation’s capital, design embodies well-being. Built around an atrium that admits light and air, the structure encourages physical activity with a staircase that spans its eight levels. A green roof reduces storm runoff; rainwater is collected and stored for plumbing, resulting in a 41 percent reduction in toilet fixtures’ water use. Limestone panels (left) were salvaged from the previous building on the site. Materials used throughout the building contain recycled content.

Further Reading:
https://www.aia.org/showcases/71306-milken-institute-school-of-public-health
https://publichealth.gwu.edu/content/milken-institute-school-public-health-wins-excellence-architecture-new-building-merit-award
http://designawards.architects.org/projects/honor-awards-for-design-excellence/milken-institute-school-of-public-health-george-washington-university/

National Oceanic and Atmospheric Administration’s Inouye Regional Center

Located at the heart of Pearl Harbor, on Oahu’s Ford Island, the National Oceanic and Atmospheric Administration’s Inouye Regional Center repurposed two airplane hangars—which narrowly escaped destruction in the 1941 attack—linking them with a new steel and glass building (right). The research and office facility for 800 employees was raised to guard it from rising sea levels. Given the size of the hangars, daylight illuminated only a small fraction of the space, so specially crafted lanterns reflect sunlight further into their interiors. Necessity required invention: Due to anti-terrorism regulations, no operable windows were allowed in the space. Through a passive downdraft system that taps prevailing sea breezes, the building is completely naturally ventilated. The adjacent waterfront was returned to a more natural state with native vegetation.

Further Reading:
https://www.aia.org/showcases/76911-noaa-daniel-k-inouye-regional-center
http://www.hpbmagazine.org/NOAA-Daniel-K-Inouye-Regional-Center-Honolulu-Hawaii/
http://www.architectmagazine.com/project-gallery/noaa-daniel-k-inouye-regional-center_o
http://www.hok.com/design/type/government/national-oceanic-and-atmospheric-administration-noaa/

R.W. Kern Center

Serving as the gateway to Hampshire College, in Amherst, Massachusetts, the multipurpose R.W. Kern Center holds classrooms, offices, a café, and gallery space—and is the place where prospective students are introduced to campus. The school converted what was once an oval driveway into a wildflower meadow, now encouraging a pedestrian approach (seen above). The center is self-sustaining, generating its own energy through a rooftop solar array, harvesting its water from rainfall, and processing its own waste. Its gray water treatment system is in a pilot program for the state, and may pave the way for others.

Further Reading:
https://www.aia.org/showcases/76921-rw-kern-center
https://architizer.com/projects/rw-kern-center
https://www.hampshire.edu/discover-hampshire/rw-kern-center

Manhattan 1/2/5 Garage & Salt Shed

Two buildings belonging to New York City’s sanitation department redefine municipal architecture. Resembling a grain of salt, the cubist form of the Spring Street Salt Shed holds 5,000 tons for clearing icy streets. The Manhattan 1/2/5 Garage (background), whose floors are color-coded for each of the three districts, is home to 150 vehicles, wash and repair facilities, and space for 250 workers. The garage is wrapped in 2,600 aluminum “fins,” shading devices that pivot with the sun’s rays, reducing heat gain and glare through the glazed walls while still allowing views to the outside. Municipal steam heats and cools the building, so no fuels are burned. A 1.5-acre green roof reduces heat-island effect and filters rainwater. A condensate by-product of the steam is also captured, and, along with the rainwater, used for toilets and the truck wash. Combined with low-flow fixtures, the process reduced water consumption by 77 percent.

Further Reading:
https://www.dattner.com/portfolio/manhattan-districts-125-garage/
https://www.ohny.org/site-programs/weekend/sites/dsny-manhattan-125-sanitation-garage-salt-shed
https://www.aia.org/showcases/76671-manhattan-districts-125-garage–spring-stree
http://www.architectmagazine.com/project-gallery/manhattan-districts-1-2-5-garage-spring-street-salt-shed_o
https://www.burns-group.com/project/manhattan-125-garage-and-spring-street-salt-shed/

Starbucks Hillsboro, Oregon

Starbucks has been a leader in the development and implementation of a scalable green building program for over a decade .Starbucks joined the U.S. Green Building Council® (USGBC) in 2001 and collaborated with them to develop the LEED® for Retail program, an effort to adapt LEED (Leadership in Energy and Environmental Design) to new construction and commercial interior strategies for retail businesses. In 2008,Starbucks challenged themselves to use LEED certification not just for flagship stores and larger buildings, but for all new, company-operated stores. Many people, even internally, were skeptical, especially with Starbucks growth across the globe. But by collaborating with USGBC and other like-minded organizations, we have been able to integrate green building design not only into new stores but also into our existing store portfolio. Starbucks has also succeeded in providing a practical certification option for retailers of all sizes.

Further Reading:
https://www.starbucks.com/responsibility/environment/leed-certified-stores

The Edge, Deloitte

The Edge, located in Amsterdam, is a model of sustainability.is billed as the world’s most sustainable office building and has the certification to prove it. But, it’s more than that. The place is, well, fun. And interesting. And inviting. So much so that professionals are actually applying for employment with Deloitte Netherlands because they want to work in the building. That it has become a recruiting tool is a satisfying side effect of a project designed to both redefine efficiency and change the way people work. “We wanted to ensure that our building not only had the right sustainability credentials, but was also a real innovative and inspiring place for our employees,” says Deloitte Netherlands CEO Peter Bommel.

Read the rest of this entry »


Passive Temperature Control and Other Sustainable Design Elements to Consider

With a growing interest in green and sustainable home design, there have been a lot of changes in the way people design their homes. A green, sustainable home is made using different design elements and materials, which help to create a more energy-efficient home that minimizes the homeowner’s negative impact on the environment as much as possible.

From the various sustainable design elements to the materials that help make it happen, there are countless ways for homeowners to create a green, sustainable design that is beautiful. Here is a list of some of the most popular sustainable elements and materials for homeowners to keep in mind when building or renovating their home.

Temperature Control

One of the major points of sustainable home design is concerned with temperature control. Everyone wants a home that stays cool during the warmer months and warm during the colder ones. Although the common method people turn to is air conditioning and heating, neither of these is very energy-efficient nor environmentally friendly. Instead, people are now turning to tried-and-tested sustainable alternatives to cooling and heating.

ICF (Insulated Concrete Forms) homes are one popular sustainable design element that homeowners are turning to for their homes. These ICF homes are made using an insulated concrete form, which fit together like puzzle pieces to form the shell of a new house, which is insulated inside and out. Due to the way the forms are put together—and are supported with extra concrete and rebar—there are very few cracks, which helps minimize the potential for air leaks, therefore increasing the effectiveness of the insulation overall.

All of this combined means that homeowners who choose ICF homes will be able to save a lot of money on cooling and heating costs, and will not be releasing so many harmful greenhouse gases into the environment.

Additionally, temperature control can see improvement through the sort of siding that homeowners select for their home. While traditional vinyl siding is most common, it is not the best option on the market in terms of protecting your home and helping with insulation needs. Other options, like fiber cement siding and steel log siding not only offer more durability, but they also will work better at helping to insulate a home. Due to the materials and how they are put in place, homeowners can rest assured that there will be very few air leaks, especially when combined with a well-insulated home.

Weatherproofing

Another common element found in sustainable home design includes weatherproofing the home. Weatherproofing helps to ensure further that there are no air leaks in the home, regardless of how well insulated it may be. Furthermore, as the term implies, weatherproofing helps to ensure that the home’s structure is well-protected from potential harm that can from the elements. All-in-all, weatherproofing will help ensure a home can hold up against different types of weather and help save the homeowner energy, money, and resources by covering up any air leaks that may still be present even with insulation.

The best way to weatherproof a home is to invest in and install a high-quality house wrap. House wrap is the layer of material that separates a home’s siding from its overall structure. It uses a perforated polyolefin membrane material, which is wrapped tightly around the entire structure and secured with capped fasteners. Because of the material, house wrap is extremely strong and durable, which helps to ensure it will stay in place and last for a long time.

Additionally, a good house wrap will prevent any air infiltration and easily allow moisture to escape, rather than staying trapped and creating a perfect breeding ground for mold and mildew.

Durable Exterior Siding

A third major element of sustainable home design is a good, durable exterior siding. Although vinyl siding is the most known type of exterior home siding, it is not necessarily the most sustainable option available. Similarly, siding options like traditional log siding are also not sustainable nor eco-friendly. Instead, homeowners looking for better, greener siding options that can further increase their home’s sustainability.

One of the most popular sustainable siding options around includes fiber cement siding. Fiber cement siding is a kind of siding resembles the classic wood or vinyl siding, but is made of a much more durable mix of wood pulp and cement. This makes it an option that can stay looking new for years, without warping, fading, or any damage from weather and insects. Because of this durability, homeowners do not have to worry about having to replace pieces over time due to damage, which allows them to save money over time. Additionally, fiber cement siding is a low maintenance option that will add yet another layer of protection to any home, on top of things like house wrap and ICF homes.

Creating a green, sustainable home is not difficult, but it does take a certain level of dedication. Besides choosing the right energy-efficient appliances, homeowners need to ensure that the home’s overall structure is made using sustainable elements and products.

From being aware of temperature control and weatherproofing to finding the perfect exterior siding, there are countless ways to start making a sustainable home. Even if some of these elements go visually unseen, the differences will be seen and felt in the comfort level of the home and the utility bills.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 

 

 


Our Exclusive ILMA Interview with @Collier1960 Collier Ward

Collier Ward is a registered Architect, an aspiring novel and short story writer, an acknowledged construction industry influencer, and a follower of Jesus, who thrives on communication and community.

“One of my long-term career goals is to see more books, movies, and television shows about architects and architecture. For years I have said “Architecture Holds a Thousand Stories” and it remains an untapped source for dramatic content. If you are in charge of story development in the entertainment industry I would be glad to discuss the comedy and drama embedded in my profession. If you have interest in any of these subjects, I’d be pleased to connect with you.” -Collier Ward

Connect with Collier Ward on LinkedIn or  Twitter.

ILMA INTERVIEW

When and why did you decide to become an Architect?

As a child, I’m not even sure how old I was, I saw my older brother drawing a floor plan. I didn’t understand the series of rectangles and asked him what it was. He informed me that it was our house. To me, a house was depicted by the archetypal image of a simple box with a door, a sloped roof, and a chimney with a swirl of smoke. I told him it was an awful drawing. He explained that it was what we’d see from above if we took the roof off and looked in from above. Then I saw it! The bedrooms, the kitchen, the carport were just as they should be. Although I considered art teacher, artist, cartoonist, and ad man as possible careers, this childhood revelation of architecture proved to be my origin story.

What were some of the challenges of achieving your dream?

Other than a few financial struggles and loan debts (which don’t even compare to today’s students’) my schooling and internship were fairly typical. From the first day I walked on campus (Auburn University, 1979) to the day I became registered in North Carolina was just under a decade.

Any memorable clients or project highlights?

As an intern, I worked on the College of Architecture building at the University of North Carolina at Charlotte. The design architect was Gwathmey Siegel (I worked for the local firm that produced the Construction Documents.) I had the pleasure of detailing the three monumental stairs in the main gallery, based on concepts by Charles Gwathmy. Since then I’ve worked with many Architects who climbed those stairs and pulled all-nighters in those studios.

How does your family support what you do?

My wife and I were married in my third year of school. If there were awards for architects’ spouses Celese would have several by now. She has supported, humored, and encouraged me to this day.

Who is your favorite Architect? Why?

As a student, I had two architects (one past, one current) that inspired and influenced me most; both for their writings as well as their designs. I think it’s interesting that both Alvar Aalto and Robert Venturi practiced with their wives.

What is your favorite modern (contemporary) project? Why?

Having grown up in St. Louis, MO, the Gateway Arch (as much sculpture as a building) has always been a favorite landmark for me. It was a source of pride – we took visitors up when they came to town. It was also a link to my fascination with Finnish architecture.

Where do you see the profession going over the next few decades?

Our profession has transformed very little over the past three decades. Groups within the profession push for change (improved education, environmental sustainability, employment diversity, etc,) but to the rank and file architect (and the clients we serve) I’m not sure much has changed. Nevertheless, I have hope for future.

What does Architecture mean to you?

“True Architecture exists only where man stands in the center, his comedy and tragedy both,” said Alvar Aalto. When all is said and done, architecture is the stage upon which we live the stories of our lives.

If you could not be an Architect, what would you be?

This is my favorite question. I will always be an architect, but I hope to reach more people with my other passion – writing. For years I have said, “Architecture holds a thousand stories.” Our profession is a closed book to most people. I believe well-written stories will reveal to the population at large what Architects can do. Every other profession has its TV shows, books, and movies; why not Architecture?

What is your dream project?

Per my previous answer, I would like to be the story consultant for a movie or TV series that accurately portrays what architects do – and can do – for our society. I want a wide audience to know the joy and drama that is embedded in every work of architecture.

Final Thoughts on How to Be Successful?

As cliché as it sounds, hard work is essential. But not hard work and long hours for the sake of fulfilling a stereotype; hard work toward a personal goal. I quote Daniel Burnham; “Make no little plans; they have no magic to stir men’s blood and probably themselves will not be realized. Make big plans; aim high in hope and work…”

For more exclusive ILMA interviews click here.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


#EcoMonday Contemporary Mediterranean Home With a “Breathing” Eco-Façade

Breathing House 14

Excerpt from “Freshhomes Design & Architecture”: Travessa de Patrocinio is one of those bohemian places in Lisbon that require a sweet disposition while visiting. The unique collaboration between these three designers, Luís Rebelo de AndradeTiago Rebelo de Andrade and Manuel Cachão Tojal, gave birth to a project inspired by minimalism, with an interesting Mediterranean “coverage”. Imagine a thick “coat” of plants shadowing the entire façade of a house that spreads vertically. “Its walls are completely covered with vegetation, creating a vertical garden, filled with around 4500 plants from 25 different Iberian and Mediterranean varieties which occupies 100 square meters. So, short levels of water consumption are guaranteed as well as little gardening challenges.”  Click here to read the rest of the story.

Breathing House 00

Breathing House 0

Excerpt from Architizer News: The House in Travessa do Patrocínio by RA\\ ( Luís Rebelo de Andrade, Tiago Rebelo de Andrade, Manuel Cachão Tojal) does just that. The narrow townhouse is situated smack dab in Lisbon, in a neighborhood with little access to green spaces. To compensate for this lack, the architects draped the house with lush green facades that cover 100 square-meters of wall space. But this isn’t your run-of-the-mill green building accessory. The facades are integral components to the architecture, not just tacked on for a higher LEED score. They’re planted with approximately 4,500 plants sourced from 25 different local varieties, which  all require little maintenance. The result is a vertical garden that the architects say functions as an urban “lung” within the pavement-heavy area, helping to rid the residential street of excess noise, carbon, and other pollutants floating about. Click here to read the rest of the story.
Breathing House 13

Breathing House 16 Breathing House 15 Breathing House 13 Breathing House 12 Breathing House 11 Breathing House 10 Breathing House 09 Breathing House 08 Breathing House 07    Breathing House 03 Breathing House 02 Breathing House 01

A Brief History of Green Walls

The concept of green walls is an ancient one, with examples in architectural history
reaching back to the Babylonians – with the famous Hanging Gardens of Babylon, one
of the seven ancient wonders of the world. Highlights of the history of green walls are
provided below:

  • 3rd C. BCE to 17th C. AD: Throughout the Mediterranean, Romans train grape vines (Vitis species) on garden trellises and on villa walls. Manors and castles with climbing roses are symbols of secret gardens.
  • 1920s: The British and North American garden city movement promote the integration of house and garden through features such as pergolas, trellis structures and self-clinging climbing plants.
  • 1988: Introduction of a stainless steel cable system for green facades.
  • Early 1990s: Cable and wire-rope net systems and modular trellis panel systems enter the North American marketplace.
  • 1993: First major application of a trellis panel system at Universal CityWalk in California.
  • 1994: Indoor living wall with bio-filtration system installed in Canada Life Building in Toronto, Canada.
  • 2002: The MFO Park, a multi-tiered 300’ long and 50’ high park structure opened in Zurich, Switzerland. The project featured over 1,300 climbing plants.
  • 2005: The Japanese federal government sponsored a massive Bio Lung exhibit, the centerpiece of Expo 2005 in Aichi, Japan. The wall is comprised of 30 different modular green wall systems available in Japan.
  • 2007: Seattle implements the Green Factor, which includes green walls.
  • 2007: GRHC launches full day Green Wall Design 101 course; the first on the subject in North America.
  • 2008: GRHC launches Green Wall Award of Excellence and Green Wall Research Fund.

Source: GreenScreen

Biofiltration

An ‘active’ living wall is intended to be integrated into a building’s infrastructure and designed to biofilter indoor air and provide thermal regulation. It is a hydroponic system fed by nutrient rich water which is re-circulated from a manifold, located at the top of the wall, and collected in a gutter at the bottom of the fabric wall system. Plant roots are sandwiched between two layers of synthetic fabric that support microbes and a dense root mass. These root microbes remove airborne volatile organic compounds (VOCs), while foliage absorbs carbon monoxide and dioxide. The plants’ natural processes produce cool fresh air that is drawn through the system by a fan and then distributed throughout the building. A variation of this concept could be applied to green facade systems as well, and there is potential to apply a hybrid of systems at a large scale.

Source: GreenScreen

Public Benefits of Green Walls

Breathing House 101b

Source: GreenScreen

Private Benefits of Green Walls

Breathing House 101a

Source: GreenScreen

Also Check Out:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


@WJMArchitect Recognized for Green Architecture and Design

William Martin of Westwood received an award for his work on a Hillsdale home for a wounded soldier.

By Michelle Sartor

Westwood resident William Martin, who has been working as an independent architect since 1991, recently won an award for a sustainable home design he created for a wounded soldier.

The American Institute of Architects New Jersey Committee on the Environment (COTE) held its first competition this year to reward architects for outstanding sustainable designs. Martin submitted his project in the residential category and was named the winner in the COTE Top 10 Awards.

The design is for a home in Hillsdale that Martin did in conjunction with Homes For Our Troops. Wounded Iraq War Marine Corp. Cpl. Visnu Gonzalez lives in the home with his mother, Maria.

The home, which was constructed in 2009, has several green elements. It is LEED (Leadership in Energy and Environmental Design) Platinum Certified and is partially self-sustaining by creating its own renewable energy. The house has solar panels, geothermal heating and air conditioning, LED lighting and a mechanism for rain water capture and re-use.

Martin appeared on NBC News with Brian Williams for his efforts on the home. Click here to see the segment.

Click here to read the rest of the story.

Also Check Out:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


Team New Jersey To Make Precast Concrete Solar House Reality

NEWARK, Jul 12 2011 – Construction of ENJOY: A Generation House, the U.S. Department of Energy Solar Decathlon 2011 entry from Team New Jersey, a collaborative effort of Rutgers, The State University of New Jersey and New Jersey Institute of Technology (NJIT), begins July 11, 2011 following a ground-breaking at NJIT.  Once construction of the house is complete, Team NJ will hold an official topping-off event at NJIT with major sponsors and VIP guests. Work will continue at NJIT throughout the summer with the students performing tests to ensure all systems work properly.   

In September, the house will be de-constructed, loaded onto trucks, and shipped to the competition site on the National Mall in Washington, D.C. Upon arrival, the team will aim for a two-day reconstruction timeline before adding finishing touches. Once completed, the ENJOY House will be ready to accommodate the thousands of visitors who will be touring the house during public display hours from Sept. 23-Oct. 2, 2011.

The ENJOY House is designed around a central core containing integrated systems. It is the first house in the competition’s history to use precast concrete panels as the primary construction material. ENJOY, a beach-inspired house, will feature an inverted-hip roof design for rainwater collection to support irrigation and grey water systems, an 8.2kW photovoltaic system that will allow the house to be completely powered by the sun, and the application of universal design principles, which will allow the house to be accessible to people of all ages and levels of mobility.

An interdisciplinary project, Team NJ is composed of architecture and industrial design students from NJIT’s College of Architecture and Design and engineering, landscape architecture, planning, and computer science students from Rutgers University. Students regularly attend meetings with professionals in the field and take classes that focus on specific aspects of the design, such as a class on green building at Rutgers University, the NJIT Solar Design Studio and System’s Interface Studio, along with several classes offered in the landscape architecture school and engineering school.

Click here to read the rest of the article

Click here to see previous post of Team NJ Solar House Project


The 2030 Challenge for Planning @Arch2030

The built environment is the major source of global demand for energy and materials that produce by-product greenhouse gases (GHG). Planning decisions not only affect building energy consumptions and GHG emissions, but transportation energy consumption and water use as well, both of which have large environmental implications.

In 2008, Architecture 2030 issued The 2030 Challenge for Planning asking the global architecture and planning community to adopt the following targets:

  • All new and renovated developments / neighborhoods / towns / cities / regions immediately adopt and implement a 60% reduction standard below the regional average for fossil-fuel operating energy consumption for new and renovated buildings and infrastructure and a 50% fossil-fuel reduction standard for the embodied energy consumption of materials.
  • The fossil-fuel reduction standard for all new buildings, major renovations, and embodied energy consumption of materials shall be increased to:
    • 70% in 2015
    • 80% in 2020
    • 90% in 2025
    • Carbon-neutral in 2030 (using no fossil fuel GHG emitting energy to operate or construct).
      These targets may be accomplished by implementing innovative sustainable design strategies, generating on-site renewable power and/or purchasing renewable energy (20% maximum).
  • All new and renovated developments / neighborhoods / towns / cities / regions immediately adopt and implement a 50% reduction standard below the regional average for:
    • Vehicle Miles Traveled (VMT) for auto and freight and
    • water consumption.
Seattle 2030 District
White House Challenge’s Partners
Activating the District

Click here for more information on Architecture 2030.