13 Examples of Green Architecture

The Morris & Gwendolyn Cafritz Foundation Environmental Center

The nickname for the Morris and Gwendolyn Cafritz Foundation Environmental Center is the Grass Building, and it perfectly captures its spirit. It’s a structure so thoughtfully designed it’s almost as energy-efficient and low impact as the greenery that surrounds it.

The Maryland building is part of an educational farm on the Potomac River Watershed that the Alice Ferguson Foundation used to teach people about the natural world. This new building—which became the 13th in the world to receive full Living Building Challenge certification in June 2017—is an educational facility designed to blur the lines between indoors and out, while still providing shelter as needed. “Part of the intent of the building is to be in the landscape and still have a bathroom to use,” says Scott Kelly, principal-in-charge at Re:Vision, a Philadelphia-based architecture and design studio.

Further Reading:
https://gbdmagazine.com/2017/grass-building
https://www.aia.org/showcases/92581-the-morris–gwendolyn-cafritz-foundation-env
https://living-future.org/lbc/case-studies/morris-gwendolyn-cafritz-foundation-environmental-center
http://hughloftingtimberframe.com/gallery/commercial/cafritz-foundation-environmental-center
http://www.cafritzfoundation.org/

Brock Environmental Center

Drawing thousands of students, the Brock Environmental Center is a regional hub for the Chesapeake Bay Foundation, in Virginia Beach, Virginia, supporting its education and wetlands restoration initiatives. A connection to nature defines the building’s siting, which provides sweeping views of the marsh and also anticipates sea-level rise and storm surges with its raised design. Parts were sourced from salvage: Its maple floors once belonged to a local gymnasium while school bleachers, complete with graffiti, were used for interior wood trim. The center was recognized for its positive footprint: It has composting toilets, captures and treats rainfall for use as drinking water, and produces 80 percent more energy than it uses, selling the excess to the grid.

Further Reading:
http://www.cbf.org/about-cbf/locations/virginia/facilities/brock-environmental-center
https://living-future.org/lbc/case-studies/the-chesapeake-bay-brock-environmental-center
https://www.visitvirginiabeach.com/listing/chesapeake-bay-foundations-brock-environmental-center/979
https://www.aia.org/showcases/76311-brock-environmental-center

Discovery Elementary School

Students have three distinct, age-appropriate playgrounds—with natural elements such as rocks and fallen trees—at Arlington, Virginia’s Discovery Elementary School. The name honors astronaut John Glenn, who returned to space on the Discovery shuttle and once lived in the neighborhood. Exploration is a theme at the school, whose interior focuses on forests, oceans, atmosphere, and the solar system. The largest zero-energy school in the country, it offers “hands-on learning around energy efficiency and generation,” jurors noted. The school maximizes natural light and provides views to the outside in all classrooms.

Further Reading:
https://www.aia.org/showcases/71481-discovery-elementary-school-
https://www.aiadc.com/sites/default/files/031%20-%20DiscoveryElementarySchool.pdf
https://www.google.com/search?q=Discovery+Elementary+School+AIA&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjS-pnHo6LcAhUMON8KHSlUDlYQsAQIdA&biw=1583&bih=1187

Bristol Community College

A laboratory is an energy-intensive enterprise, with specialized lighting and ventilation needs. That’s why jurors praised the airy health and science building at Bristol Community College, in Fall River, Massachusetts, for its net-zero energy achievement, “a difficult feat,” they noted, “in a cold climate like New England’s.” The move saves $103,000 in annual operating costs and allows the college, which offers a suite of courses in sustainability and energy, to practice what it teaches. Part of a holistic campus redesign, the new building’s location increases the density—and thus walkability—of campus for students.

Further Reading:
https://www.aia.org/showcases/71576-bristol-community-college-john-j-sbrega-heal
https://www.mass.gov/service-details/bristol-community-college-john-j-sbrega-health-and-science-building
http://www.architectmagazine.com/project-gallery/bristol-community-college-john-j-sbrega-health-and-science-building_o

Central Energy Facility

Orange and red pipes flaunt their role in “heat recovery” at Stanford University’s Central Energy Facility. The center for powering the California campus—more than a thousand buildings—the facility was transformed from an aging gas-fired plant to one fueled mostly by an off-site solar farm, fulfilling a goal of carbon neutrality and reducing energy use by a third. With large health care and research buildings, the campus needs as much heating as cooling; now a unique recovery system taps heat created in cooling processes to supply 93 percent of the heating and hot water required for campus buildings. The plant reduces Stanford emissions by 68 percent and potable water usage by 18 percent, potentially saving millions of dollars and one of the state’s scarce resources.

Further Reading:
https://www.aia.org/showcases/25976-stanford-university-central-energy-facility
https://sustainable.stanford.edu/new-system
https://www.archdaily.com/786168/stanford-university-central-energy-facility-zgf-architects
https://www.zgf.com/project/stanford-university-central-energy-facility

Ng Teng Fong General Hospital

Like other buildings in Singapore, Ng Teng Fong General Hospital incorporates parks, green roofs, and vertical plantings throughout its campus. But the city-state’s hospitals haven’t traditionally offered direct access to fresh air, light, and outdoor views. This hospital marks a dramatic change, optimizing each for patients. About 70 percent of the facility is naturally ventilated and cooled by fans, cross-ventilation, and exterior shading, saving on precious water resources. The building uses 38 percent less energy than a typical hospital in the area.

Further Reading:
https://www.aia.org/showcases/76821-ng-teng-fong-general-hospital–jurong-commun
http://www.hok.com/about/news/2017/07/25/ng_teng_fong_general_international_academy_for_design_and_health_awards
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017/58f7c23ce58eceac31000615-aia-selects-top-10-most-sustainable-projects-of-2017-photo
http://www.topicarchitecture.com/articles/154396-how-modern-hospitals-recognize-the-impact-o

Eden Hall Farm, Chatham University

After receiving the donation of 388-acre Eden Hall Farm, 20 miles north, Pittsburgh’s Chatham University created a satellite campus centered around a sustainable living experiment. The university views the landscape—an agricultural area adjacent to an urban center—as critical to supporting cities of the future. The original buildings are complemented by new facilities for 250 residential students (and eventually 1,200), including a dormitory, greenhouse, dining commons, and classrooms. Students get hands-on experience in renewable energy systems—the campus generates more than it uses—sustainable agriculture and aquaculture, waste treatment, and water management. Now home to the Falk School of Sustainability, the farm is producing the next generation of environmental stewards, who follow in the footsteps of alum Rachel Carson.

Further Reading:
https://www.aia.org/showcases/76481-chatham-university-eden-hall-campus
http://www.chatham.edu/news/index.php/2018/01/chatham-views/from-eden-hall-pioneer-to-farm-manager
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017
https://falk.chatham.edu/masterplan.cfm

Milken Institute School of Public Health, George Washington University

At George Washington University’s Milken Institute School of Public Health, located in the nation’s capital, design embodies well-being. Built around an atrium that admits light and air, the structure encourages physical activity with a staircase that spans its eight levels. A green roof reduces storm runoff; rainwater is collected and stored for plumbing, resulting in a 41 percent reduction in toilet fixtures’ water use. Limestone panels (left) were salvaged from the previous building on the site. Materials used throughout the building contain recycled content.

Further Reading:
https://www.aia.org/showcases/71306-milken-institute-school-of-public-health
https://publichealth.gwu.edu/content/milken-institute-school-public-health-wins-excellence-architecture-new-building-merit-award
http://designawards.architects.org/projects/honor-awards-for-design-excellence/milken-institute-school-of-public-health-george-washington-university/

National Oceanic and Atmospheric Administration’s Inouye Regional Center

Located at the heart of Pearl Harbor, on Oahu’s Ford Island, the National Oceanic and Atmospheric Administration’s Inouye Regional Center repurposed two airplane hangars—which narrowly escaped destruction in the 1941 attack—linking them with a new steel and glass building (right). The research and office facility for 800 employees was raised to guard it from rising sea levels. Given the size of the hangars, daylight illuminated only a small fraction of the space, so specially crafted lanterns reflect sunlight further into their interiors. Necessity required invention: Due to anti-terrorism regulations, no operable windows were allowed in the space. Through a passive downdraft system that taps prevailing sea breezes, the building is completely naturally ventilated. The adjacent waterfront was returned to a more natural state with native vegetation.

Further Reading:
https://www.aia.org/showcases/76911-noaa-daniel-k-inouye-regional-center
http://www.hpbmagazine.org/NOAA-Daniel-K-Inouye-Regional-Center-Honolulu-Hawaii/
http://www.architectmagazine.com/project-gallery/noaa-daniel-k-inouye-regional-center_o
http://www.hok.com/design/type/government/national-oceanic-and-atmospheric-administration-noaa/

R.W. Kern Center

Serving as the gateway to Hampshire College, in Amherst, Massachusetts, the multipurpose R.W. Kern Center holds classrooms, offices, a café, and gallery space—and is the place where prospective students are introduced to campus. The school converted what was once an oval driveway into a wildflower meadow, now encouraging a pedestrian approach (seen above). The center is self-sustaining, generating its own energy through a rooftop solar array, harvesting its water from rainfall, and processing its own waste. Its gray water treatment system is in a pilot program for the state, and may pave the way for others.

Further Reading:
https://www.aia.org/showcases/76921-rw-kern-center
https://architizer.com/projects/rw-kern-center
https://www.hampshire.edu/discover-hampshire/rw-kern-center

Manhattan 1/2/5 Garage & Salt Shed

Two buildings belonging to New York City’s sanitation department redefine municipal architecture. Resembling a grain of salt, the cubist form of the Spring Street Salt Shed holds 5,000 tons for clearing icy streets. The Manhattan 1/2/5 Garage (background), whose floors are color-coded for each of the three districts, is home to 150 vehicles, wash and repair facilities, and space for 250 workers. The garage is wrapped in 2,600 aluminum “fins,” shading devices that pivot with the sun’s rays, reducing heat gain and glare through the glazed walls while still allowing views to the outside. Municipal steam heats and cools the building, so no fuels are burned. A 1.5-acre green roof reduces heat-island effect and filters rainwater. A condensate by-product of the steam is also captured, and, along with the rainwater, used for toilets and the truck wash. Combined with low-flow fixtures, the process reduced water consumption by 77 percent.

Further Reading:
https://www.dattner.com/portfolio/manhattan-districts-125-garage/
https://www.ohny.org/site-programs/weekend/sites/dsny-manhattan-125-sanitation-garage-salt-shed
https://www.aia.org/showcases/76671-manhattan-districts-125-garage–spring-stree
http://www.architectmagazine.com/project-gallery/manhattan-districts-1-2-5-garage-spring-street-salt-shed_o
https://www.burns-group.com/project/manhattan-125-garage-and-spring-street-salt-shed/

Starbucks Hillsboro, Oregon

Starbucks has been a leader in the development and implementation of a scalable green building program for over a decade .Starbucks joined the U.S. Green Building Council® (USGBC) in 2001 and collaborated with them to develop the LEED® for Retail program, an effort to adapt LEED (Leadership in Energy and Environmental Design) to new construction and commercial interior strategies for retail businesses. In 2008,Starbucks challenged themselves to use LEED certification not just for flagship stores and larger buildings, but for all new, company-operated stores. Many people, even internally, were skeptical, especially with Starbucks growth across the globe. But by collaborating with USGBC and other like-minded organizations, we have been able to integrate green building design not only into new stores but also into our existing store portfolio. Starbucks has also succeeded in providing a practical certification option for retailers of all sizes.

Further Reading:
https://www.starbucks.com/responsibility/environment/leed-certified-stores

The Edge, Deloitte

The Edge, located in Amsterdam, is a model of sustainability.is billed as the world’s most sustainable office building and has the certification to prove it. But, it’s more than that. The place is, well, fun. And interesting. And inviting. So much so that professionals are actually applying for employment with Deloitte Netherlands because they want to work in the building. That it has become a recruiting tool is a satisfying side effect of a project designed to both redefine efficiency and change the way people work. “We wanted to ensure that our building not only had the right sustainability credentials, but was also a real innovative and inspiring place for our employees,” says Deloitte Netherlands CEO Peter Bommel.

Read the rest of this entry »


Mansueto Library by JAHN

JAHN is an international architectural firm with over 75 years of experience that has achieved critical recognition and won numerous awards. JAHN’s ability to integrate design creativity and corporate professionalism makes it a leading firm in global design Innovation.

The Joe and Rika Mansueto Library opened at the heart of the University of Chicago campus in 2011. It features a soaring elliptical glass dome capping a 180-seat Grand Reading Room, state-of-the-art conservation and digitization laboratories, and an underground high-density automated storage and retrieval system. The Mansueto Library speeds scholarly productivity by allowing for the retrieval of materials within an average time of 3 minutes through use of robotic cranes. Designed by renowned architect Helmut Jahn, the Mansueto Library has been recognized with a Distinguished Building Citation of Merit by the American Institute of Architects’ Chicago chapter and a Patron of the Year Award by the Chicago Architecture Foundation.

Joe and Rika Mansueto Library-01Joe and Rika Mansueto Library-02Joe and Rika Mansueto Library-04aJoe and Rika Mansueto Library-05Joe and Rika Mansueto Library-01bJoe and Rika Mansueto Library-02aJoe and Rika Mansueto Library-01aJoe and Rika Mansueto Library-03Joe and Rika Mansueto Library-04Joe and Rika Mansueto Library-00-SketchesJoe and Rika Mansueto Library-00-SiteJoe and Rika Mansueto Library-00-ElevationJoe and Rika Mansueto Library-00-Cross-Section
Location:
University of Chicago, Chicago, IL, United States
Architect: JAHN
Lead Designer: Helmut Jahn
Area: 58,700 SF
Project Year: 2011

The site in the center of theUniversity of Chicago’s Campus is surrounded by a variety of different buildings. With a mixture of styles, ranging from the gothic quadrangle to the south, the Limestone Brutalism of Netsch’s Regenstein Library to the east, the Henry Moore monument and Legorreta’s colorful Student Housing to the north and a building to the west, which will be replaced by a new Science Building. There is not much to relate to.

The problem was to store 3.5 million books with an Automated Storage and Retrieval System (ASRS). The expectations in the brief suggested to house those in a well-designed “Box” above grade. In an effort to infringe as little as possible with the open space, make the Reading Room and the Preservation Department the most pleasant space to be in and in line with our approach to challenge habitual conventions, we opted to put the books below grade, where their environment can be better controlled to achieve the desired constant temperature and humidity of 60 degrees, 30% RH – at less cost. The people-oriented spaces could thus be located at grade in a minimal elliptical glass dome, which fits the context, because it defies conventional relationships.

Murphy Jahn think it has been embraced by the leadership of the University, because it represents the mission of theUniversity of Chicago  as catalyst for the advancement of knowledge. It is interesting that this happened at an Institution where the disciplines of Architecture and Engineering are not taught, but a spirit prevails to go beyond where others stop. Science, Physics, the liberal and applied Art start, when others think they are complete.

Once a consensus on the design was reached, the normal process started to solve the problem: comfort and sustainability, light-control, structure, life-safety, operation and maintenance.

The structural grid-shell of 120 x 240 feet and the insulated glazing represent a very minimal and intelligent system for mediating between the varying exterior conditions and the desired interior comfort.

At the interior there is a seamless integration between lighting, air supply and furnishings, which were fabricated in solid European White Oak.

More than anybody the users will benefit from an environment that is pleasant and conductive to study and research. This is not your classical Library, but points to the library of the future.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


What Can Architects Do To Design Safer Classrooms For Our Children? Part 4: Safety Guidelines For Schools

ILMA Classroom 11.pngPhoto Source: The National Association of School Psychologists (NASP)

The Following is Based on the Final Report of the Sandy Hook Advisory Commission

School Site Perimeter Standards

  1. Crime Prevention Through Environmental Design (CPTED) is a crime prevention strategy that uses architectural design, landscape planning, security systems, and visual surveillance to create a potentially crime free environment by influencing human behavior and should be applied when appropriate.
  2. Fencing, landscaping, edge treatment, bollards, signage, exterior furnishings and exterior lighting may be used to establish territorial boundaries and clearly delineate areas of public, semi-public, semi-private, and private space.

Access Control

  1. School boundaries and property lines shall be clearly demarcated to control access to a school facility and shall clearly delineate areas of public, semi-public, semi-private, and private space.
  2. Where a school is a shared use facility that serves the community, internal boundaries shall be clearly defined to establish a distinct perimeter for both the school and the shared use facilities with separate and secure access points that are clearly defined. Boundaries may be defined by installing fencing, signage, edge treatment, landscaping, and ground surface treatment.
  3. The number of vehicle and pedestrian access points to school property shall be kept to a minimum and shall be clearly designated as such.
  4. Directional signage shall be installed at primary points of entry to control pedestrian and vehicular access and to clearly delineate vehicular and pedestrian traffic routes, loading/unloading zones, parking and delivery areas. Signage should be simple and have the necessary level of clarity. Signage should have reflective or lighted markings.
  5. A means shall be provided to achieve and enforce identity authentication and entry authorization at locations and areas established by school operations protocols.

Surveillance

  1. The design shall allow for the monitoring of points of entry/egress by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. At minimum, electronic surveillance shall be used at the primary access points to the site for both pedestrian and vehicular traffic.
  3. All points of vehicular entry/egress shall be adequately illuminated to enhance visibility for purposes of surveillance.
  4. Designated pedestrian and vehicular traffic routes shall be adequately illuminated to reinforce natural and or electronic surveillance during evening hours.
  5. Locate access points in areas of high visibility that can be easily observed and monitored by staff and students in the course of their normal activities. Natural surveillance may be maximized by controlling access points that clearly demarcate boundaries and spaces.
  6. Video surveillance systems may be used around the site perimeter to provide views of points of entry/egress and as a means to securely monitor an area when natural surveillance is not available.
  7. Lighting should be sufficient to illuminate potential areas of concealment, enhance observation, and to provide for the safety of individuals moving between adjacent parking areas, streets and around the school facility.
  8. Consider the design of video surveillance systems which have the ability to be used locally (on site) by emergency responders and viewed off-site at appropriate locations.

Parking Areas and Vehicular and Pedestrian Routes

  1. At the minimum, electronic surveillance shall be used at the primary access points to the site for both pedestrian and vehicular traffic.
  2. Designated pedestrian and vehicular points of entry/egress and traffic routes shall be adequately illuminated to reinforce natural and or electronic surveillance.
  3. Signage shall be posted at all vehicular access points and in delivery zones, parking areas and bus loading/unloading zones with rules as to who is allowed to use parking facilities and when they are allowed to do so. Signage should be simple and have the necessary level of clarity. Signage should have reflective or lighted markings.
  4. Parking areas shall be adequately illuminated with vandal resistant lighting.
  5. Parking shall be prohibited under or within the school building.
  6. Adequate lighting shall be provided at site entry locations, roadways, parking lots, and walkways from parking to buildings.
  7. Gas service rooms, exterior meters/regulators shall be secured.
  8. External access to school facilities shall be kept to a limited number of controlled entrances. Vehicular circulation routes shall be separated and kept to a minimum of two routes per project site for purposes of separating service and delivery areas from visitors‘ entry, bus drop-off, student parking and staff parking. Circulation routes shall be separated, clearly demarcated, and easily supervised. Provide vehicle interdiction devices at building entries to preclude vehicle access into the building.
  9. A drop-off/pick-up lane shall be designated for buses only with a dedicated loading and unloading zone designed to adequately allow for natural and/or electronic surveillance and to avoid overcrowding and accidents.
  10. Design entry roads so that vehicles do not have a straight-line approach to the main building. Use speed-calming features to keep vehicles from gaining enough speed to penetrate barriers. Speed-calming features may include, but are not limited to, speed bumps, safety islands, differing pavement surfaces, landscape buffers, exterior furnishings and light fixtures.
  11. Signage text should prevent confusion over site circulation, parking, and entrance location. Unless otherwise required, signs should not identify sensitive or high risk areas. However, signs should be erected to indicate areas of restricted admittance and use of video surveillance.
  12. Parking areas should be designed in locations that promote natural surveillance. Parking should be located within view from the occupied building, while maintaining the maximum stand-off distance possible.
  13. Locate visitor parking in areas that provide the fewest security risks to school personnel. The distance at which a potentially threatening vehicle can park in relation to school grounds and buildings should be controlled.
  14. Consider illuminating areas where recreational activities and other nontraditional uses of the building occur. If video surveillance systems are installed, adequate illumination shall be designed to accommodate it.
  15. Consider blue light emergency phones with a duress alarm in all parking areas and athletic fields. If utilized, blue light emergency phones shall be clearly visible, readily accessible and adequately illuminated to accommodate electronic surveillance.
  16. Review vehicle access routes to the school and the site civil design with emergency responders to address their incident response requirements.
  17. Design walkways from all parking areas so that they can be observed from within the school by appropriate school staff.

Recreational Areas – Playgrounds, Athletic Areas, Multipurpose Fields

  1. The design shall allow for ground level, unobstructed views, for natural and/or electronic surveillance of all outdoor athletic areas, playgrounds and recreation areas at all times.
  2. Pre-kindergarten and kindergarten play areas shall be separated from play areas designed for other students and physically secured.
  3. Athletic areas and multipurpose fields at elementary school buildings shall contain a physical protective barrier to control access and protect the area.
  4. Playgrounds and other student gathering areas shall be located away from public vehicle access areas, such as streets or parking lots by a minimum of fifty (50) feet unless prohibited by site constraints.
  5. Consider a physical protective barrier around athletic areas and multipurpose fields at secondary school buildings to control access and protect the area.
  6. Locate access points to recreational areas in areas of high visibility that can be easily observed and monitored by staff and students in the course of their normal activities. Natural surveillance may be maximized by controlling access points that clearly demarcate boundaries and spaces.
  7. Pre-K and K play areas should be designed so that they have visual sight-lines to school staff. Fencing should not diminish this visual connection.
  8. Review the design of these areas with emergency responders to address their incident response requirements.

Communication Systems

  1. All classrooms shall have two way communications with the administrative office.
  2. All communication systems shall be installed in compliance with state building and fire code requirements.
  3. Emergency Communication Systems (ECS) and/or alarm systems shall have redundant means to notify first responders, supporting agencies, public safety officials and others of an event to allow for effective response and incident management. Alarm systems must be compatible with the municipal systems in place. These systems may include radio, electronic, wireless or multimedia technology which provides real time information (such as audio, visual, mapping and relevant data) directly to first responders. Points of Broadcast input for these systems shall be reviewed with emergency responders.  A minimum of 2 shall be provided.
  4. Emergency Communication Systems (ECS) shall be installed and maintained in accordance with NFPA 72, 2010, or the most current fire code standard adopted by the local/state construction code authority. ECS may include but is not limited to public address (PA) systems, intercoms, loudspeakers, sirens, strobes, SMS text alert systems, and other emerging interoperable resource sharing communication platforms. The design of these systems shall be reviewed with emergency responders.
  5. All new buildings shall have approved radio coverage for first responders within the building based upon the existing coverage levels of communication systems at the exterior of the building. The system as installed must comply with all applicable sections of the Federal Communication Commission (FCC) Rules for Communication Systems and shall coordinate with the downlink and uplink pass band frequencies of the respective first responders. Perform a radio audibility and intelligibility test and modify system design accordingly.
  6. All in-building radio systems shall be compatible with systems used by local first responders at the time of installation.
  7. Call buttons with direct intercom communication to the central administrative office and/or security office should be installed at key public contact areas.
  8. Develop a strategy and “security team” and equip them with hand-held radios so they can be effective participants in the radio communications system.

School Building Exterior – Points of Entry/Egress and Accessibility

  1. Points of entry/egress shall be designed to allow for monitoring by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. At minimum electronic surveillance shall be used at the primary points of entry.
  3. Lighting shall be sufficient to adequately illuminate potential areas of concealment and points of building entry, and, enhance natural and/or electronic surveillance, and discourage vandalism.
  4. Consider blue light emergency phones with a duress alarm along the building perimeter as needed to enhance security. If utilized, blue light emergency phones shall be clearly visible, readily accessible and adequately illuminated to accommodate electronic surveillance.
  5. Consider the use of forced entry resistance glazing materials for windows and glazed doors using laminated glass and/or polycarbonate to significantly improve forced entry delay time beyond standard glazing techniques. A five (5) minute forced entry solution should be the design standard.

Main Entrance / Administrative Offices / Lobby

  1. Main entrances shall be well lit and unobstructed to allow for natural and/or electronic surveillance at all times.
  2. The design shall allow for visitors to be guided to a single control point for entry.
  3. The main entrance assembly (glazing, frame, & door) shall be forced entry resistant to the project standard, with a forced entry time rating as informed by local law enforcement response timing.
  4. Plans shall carefully address the extent to which glazing is used in primary entry ways, areas of high risk and areas of high traffic and the degree to which glazing is installed or treated to be bullet, blast, or shatter resistant to enhance the level of security. The district‘s priorities for the use of natural surveillance, electronic surveillance, natural light and other related security measures may affect this decision and the overall level of security.
  5. Main entrance doors shall be capable of being secured from a central location, such as the central administrative office and/or the school security office.
  6. Video surveillance cameras shall be installed in such a manner to show who enters and leaves the building and shall be monitored at locations which are attended whenever the school is occupied.
  7. The design shall allow for providing visitor accessibility only after proper identification.
  8. The use of vestibules with forced entry resistant doors and glazing to the project standard should be the design standard.
  9. The central administrative offices and/or security offices should have an unobstructed view of the main entrance lobby doors and hallways. If feasible, administrative offices abutting the main entrance should be on an exterior wall with windows for natural surveillance of visitor parking, drop off areas, and exterior routes leading to the main entrance.
  10. Walls, forced entry resistant to the project standard, should be hardened in foyers and public entries. Interior and exterior vestibule doors should be offset from each other in airlock configuration.
  11. Use vestibules to increase security. The entrance vestibule shall have both interior and exterior doors that are lockable and controllable from a remote location and be designed to achieved enhanced force entry performance as identified to the project forced entry standards.
  12. When possible, the design should force visitors to pass directly through a screening area prior to entering or leaving the school. The screening area should be an entrance vestibule, the administration/reception area, a lobby check in station, an entry kiosk, or some other controlled area. This controlled entrance should serve as the primary control point between the main entrance and all other areas of the school.
  13. Control visitor access through electronic surveillance with intercom audio and remote lock release capability at the visitor entrance.
  1. Restrict visitor access during normal hours of operation to the primary entrance. If school buildings require multiple entry points, regulate those entry points with no access to people without proper identity authentication and entry authorization. Consider an electronic access control system for authorized persons if multiple entry points are utilized during normal hours of operation.
  2. Install a panic/duress alarm or call button at an administrative/security desk as a protective measure.
  3. Proximity cards, keys, key fobs, coded entries, or other devices may be used for access control of students and staff during normal hours of operation. The system may be local (residing in the door hardware) or global (building or district- wide). Prior to installing a customized door access control system refer to the local authority having jurisdiction for compliance with state building and fire code.
  4. Consider sensors that alert administrative offices when exterior doors at all primary and secondary points of entry are left open.
  5. Consider radio frequency access control devices at primary points of entry to allow rapid entry by emergency responders. Review this technology with the emergency responders which serve the school facility.
  6. Where “forced entry” required construction is required, the forced entry delay time shall be based on the ERTA, and have the forced entry designs informed/validated by a licensed architect, professional engineer or qualified security consultant.
  7. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.

Exterior Doors

  1. The design shall allow for the points of entry/egress to be monitored by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. Lighting at these entry points shall be sufficient to illuminate potential areas of concealment, enhance natural and/or electronic surveillance, discourage and protect against vandalism.
  3. Tertiary exterior doors shall be hardened to be penetration resistant and burglar resistant.
  4. All exterior doors shall be equipped with hardware capable of implementing a full perimeter lockdown by manual or electronic means and shall be numbered per the SSIC standards.
  5. All exterior doors shall be easy to lock and allow for quick release in the event of an emergency by authorized personnel and emergency responders.
  6. All exterior doors that allow access to the interior of the school shall be numbered in sequential order in a clockwise manner starting with the main entrance. All numbers shall be visible from the street or closest point of entry/egress, contrast with its background and be retro-reflective.
  7. Doors vulnerable to unauthorized access may be monitored by adding door contacts or sensors, or may be secured through the use of other protective measures, such as delayed opening devices, or video surveillance cameras that are available for viewing from a central location, such as the central administrative office and/or security office.
  8. Specify high security keys and cylinders to prove access control.
  9. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.

Exterior Windows/Glazing/Films

  1. Windows may serve as a secondary means of egress in case of emergency. Any “rescue window” with a window latching device shall be capable of being operated from not more than forty-eight (48) inches above the finished floor.
  2. Each classroom having exterior windows shall have the classroom number affixed to the upper right-hand corner of the first and last window of the corresponding classroom. The numbers shall be reflective, with contrasting background and shall be readable from the ground plain at a minimum distance of fifty (50) feet.
  3. Plans shall carefully address the extent to which glazing is used in primary entry ways, areas of high risk and areas of high traffic and the degree to which glazing is installed or treated to be bullet, blast, or shatter resistant to enhance the level of security. The district‘s priorities for the use of natural surveillance, electronic surveillance, natural light and other related security measures may affect this decision and the overall level of security.
  4. Design windows, framing and anchoring systems to be shatter resistant, burglar resistant, and forced entry resistant to the project forced entry standards, especially in areas of high risk. Whenever feasible, specify force entry resistant glazing on all exterior glazing.
  5. Resistance for glazing may be built into the window or applied with a film or a suitable additional forced entry resistant “storm” window.
  6. Classroom windows should be operable to allow for evacuation in an emergency. Review with the authority having jurisdiction and fire department to balance emergency evacuation, external access, and security requirements.

School Building Interior

  1. Interior physical security measures are a valuable part of a school‘s overall physical security infrastructure. Some physical measures such as doors, locks, and windows deter, prevent or delay an intruder from freely moving throughout a school and from entering areas where students and personnel may be located. Natural and electronic surveillance can assist in locating and identifying a threat and minimizing the time it takes for first responders to neutralize a threat.
  2. The design shall provide for controlled access to classrooms and other areas in the interior that are predominantly used by students during normal hours of operation to protect against intruders.
  3. All interior room numbers shall be coordinated in a uniform room numbering system format. Numbering shall be in sequential order in a clockwise manner starting with the interior door closest to the main point of entry. Interior room number signage shall be wall mounted. Additional room number signage may be ceiling or flag mounted. Interior room number signage specifications and installation shall be in compliance with ADA standards and other applicable regulations as required.
  4. Record documentation drawings shall be kept which include floor plans with the room numbering system. These drawings shall be safeguarded but available for emergency responders. Review opportunities for emergency responders agencies to have these drawings as well.
  5. Review design opportunities to create interior safe havens with forced entry resistant walls and doors. These may be libraries, auditoriums, cafeterias, gyms or portions of school wings or blocks of classrooms.
  6. Establish separate entrance and exit patterns for areas that have concentrated high- volume use, such as cafeterias and corridors, to reduce time required for movement into and out of spaces and to reduce the opportunity for personal conflict. Separation of student traffic flow can help define orderly movement and save time, and an unauthorized user will perceive a greater risk of detection.
  7. Consider intruder doors that automatically lock when an intruder alarm or lockdown is activated to limit intruder accessibility within the building. If installed, intruder doors shall automatically release in the event of an emergency or power outage and must be equipped with a means for law enforcement and other first responders to open as necessary.

Interior Surveillance

  1. An intrusion detection system shall be installed in all school facilities.
  2. If video surveillance systems are utilized, the surveillance system shall be available for viewing from a central location, such as the central administrative office and/or the school security office, and at points of emergency responder incident management. Review these locations with emergency responders in the design phase.
  3. Consider electronic surveillance in lobbies, corridors, hallways, large assembly areas, stairwells or other areas (such as areas of refuge/safe havens) as a means to securely monitor those areas when natural surveillance is not available.
  4. The design of a school facility should allow for the designation of controlled hiding spaces. A controlled hiding place should create a safe place for students and personnel to hide and protect themselves in the event of an emergency. The controlled hiding space should be lockable and readily accessible. A controlled hiding space could be a classroom or some other designated area within the building.
  5. Design interior hallways and adjacent spaces to provide situational awareness of hallway conditions from these rooms, but also provide means to eliminate vision into these rooms as activated by room occupants.

Classroom Security

  1. All classrooms shall be equipped with a communications system to alert administrators in case of emergency. Such communication systems may consist of a push-to-talk button system, an identifiable telephone system, or other means.
  2. Door hardware, handles, locks and thresholds shall be ANSI/BHMA Grade 1.
  3. All classroom doors shall be lockable from the inside without requiring lock activation from the hallway, and door locks shall be tamper resistant.
  4. Classroom door locks shall be easy to lock and allow for quick release in the event of an emergency.
  5. Classroom doors with interior locks shall have the capability of being unlocked/ released from the interior with one motion.
  6. All door locking systems must comply with life safety and state building and fire codes to allow emergency evacuation.
  7. Provide doors between adjacent classrooms to provide means of moving classroom occupants from one classroom to the next as a means to relocate students and teachers from an impending hallway threat. Provide such doors with suitable locking hardware to preclude unauthorized tailgating.
  8. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.
  9. If classroom doors are equipped with a sidelight, the glazing should be penetration/forced entry resistant to the project forced entry standard.
  10. If interior windows are installed to provide lines of sight into/out of classrooms or other populated areas, certain factors should be taken into consideration relating to the size, placement and material used for those windows, including:
  11. Minimizing the size of windows or the installation of multiple interspersed smaller windows with barriers in a larger window area to deter intruder accessibility.
  12. Placing windows at a sufficient distance from the interior locking mechanism to prevent or make difficult the opening of a door or lock from outside.
  13. Concealing or obstructing window views to prevent an assailant‘s ability to ascertain the status or presence of persons inside of a classroom during lockdown.
  14. Hardening window frames and glazing to the project forced entry standards to lessen window vulnerability.

Large Assembly Areas (gym, auditorium, cafeteria, or other areas of large assembly)

  1. Points of entrance and egress shall be clearly demarcated and designed to meet the project forced entry standards.
  2. Lighting shall be sufficient to illuminate potential areas of concealment, enhance natural and/or electronic surveillance, discourage vandalism and protect against vandalism.
  3. Electronic surveillance should be used in large assembly areas and at all exit doors to securely monitor those areas when natural surveillance is not available.

Shared Space or Mixed Occupancy (library, BOE, mixed use or other community service)

  1. Shared space shall have separate, secure and controllable entrances.
  2. The design of shared space should prevent unauthorized access to the rest of the school.
  3. The design of shared space shall allow for the monitoring of points of entry/egress by natural and/or electronic surveillance during normal hours of operation.

Roofs

  1. The design shall allow for roof accessibility to authorized personnel only.
  2. Access to the roof should be internal to the building. Roof access hatches shall be locked from the inside.
  3. If external access exists, roof ladders should be removable, retractable, or lockable. Screen walls around equipment or service yards should not provide easy access to the roof or upper windows.
  4. Provide adequate lighting and controls for roof access means and roof access points into the school.

Critical Assets/Utilities

  1. Screens at utilities, such as transformers, gas meters, generators, trash dumpsters, or other equipment shall be designed to minimize concealment opportunities and adequate to preclude unauthorized access. Installation of screens at utilities shall be compliant with utility company requirements.
  2. Access to building operations systems shall be restricted to designated users with locks, keys and/or electronic access controls. Secure all mechanical rooms with intruder detection sensors.
  3. Loading docks shall be designed to keep vehicles from driving into or parking under the facility.
  4. Spaces with critical systems shall be provided appropriate graphics to be recognizable to emergency responders.
  5. Gas meter/regulator rooms shall be provided with forced entry resistant doors and to the project standards.
  6. Gas leak detection systems/sensors shall be installed wherever gas metering or appliances are installed.
  7. Shipping and receiving areas shall be separated from all utility rooms by at least fifty (50) feet unless prohibited by site constraints. If a site is determined to be physically constrained from reasonably meeting the fifty (50) foot separation requirement, maximize the separation distance between the receiving area and the utility room to the greatest extent possible. Utility rooms and service areas include electrical, telephone, data, fire alarm, fire suppression rooms, and mechanical rooms.
  8. Critical building components should be located away from vulnerable areas. Critical building components may include, but are not limited to:
    1. Emergency generator;
    2. Normal fuel storage;
    3. Main switchgear;
    4. Telephone distribution;
    5. Fire pumps;
    6. Building control centers;
    7. Main ventilation systems if critical to building operation.
    8. Elevator machinery and controls.
    9. Shafts for stairs, elevators, and utilities.

Security Infrastructure and Design Strategies

  1. The design shall include special rooms for hazardous supplies that can be locked.
  2. The design shall include secured spaces, closets, cabinets or means of protection to minimize the use of dangerous objects from shop, cooking or other similar occupancies.
  3. Egress stairwells should be located remotely and should not discharge into lobbies, parking or loading areas.
  4. Trash receptacles, dumpsters, mailboxes and other large containers shall be kept at least thirty (30) feet from the building unless prohibited by site constraints. If a site is determined to be physically constrained from reasonably meeting the thirty (30) foot separation requirement, maximize the separation distance to the greatest extent possible.

(Source: Final Report Of The Sandy Hook Advisory Commission)

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


What Can Architects Do To Design Safer Classrooms For Our Children? Part 3 Actions We Can Take To Promote Safe And Successful Schools

 ILMA Classroom 05.png

Photo Source: S&S Worldwide

Policies and funding that support comprehensive school safety and mental health efforts are critical to ensuring universal and long-term sustainability. However, school leaders can work toward more effective approaches now by taking the following actions:

  1. Work with School Leadership to promote, develop and establish a “Safety Team” that includes key personnel: principals, teachers, school-employed mental health professionals, instruction/curriculum professionals, school resource/safety officer, and a staff member skilled in data collection and analysis.
  2. Work with the school’s “Safety Team” assess and identify needs, strengths, and gaps in existing services and supports (e.g., availability of school and community resources, unmet student mental health needs) that address the physical and psychological safety of the school community.
  3. Assist with the evaluation of the safety of the school building and school grounds by examining the physical security features of the campus.
  4. Safety Team should review how current resources are being applied.
  5. Are school employed mental health professionals providing training to teachers and support staff regarding resiliency and risk factors?
  6. Do mental health staff participate in grade-level team meetings and provide ideas on how to effectively meet students’ needs?
  7. Is there redundancy in service delivery?
  8. Are multiple overlapping initiatives occurring in different parts of the school or being applied to different sets of students?
  9. Safety Team should implement an integrated approach that connects behavioral and mental health services and academic instruction and learning (e.g., are mental health interventions being integrated into an effective discipline or classroom management plan?).
  10. Safety Team should provide adequate time for staff planning and problem solving via regular team meetings and professional learning communities. Identify existing and potential community partners, develop memoranda of understanding to clarify roles and responsibilities, and assign appropriate school staff to guide these partnerships, such as school-employed mental health professionals and principals.
  11. Safety Team should provide professional development for school staff and community partners addressing school climate and safety, positive behavior, and crisis prevention, preparedness, and response.
  12. Safety Team should engage students and families as partners in developing and implementing policies and practices that create and maintain a safe school environment.
  13. As Architects we can assist the “Safety Team” by utilizing strategies developed by Crime prevention through environmental design(CPTED), a multi-disciplinary approach to deterring criminal behavior through environmental design. CPTED strategies rely upon the ability to influence offender decisions that precede criminal acts. Generally speaking, most implementations of CPTED occur solely within the urbanized, built environment. Specifically altering the physical design of the communities in which humans reside and congregate in order to deter criminal activity is the main goal of CPTED. CPTED principles of design affect elements of the built environment ranging from the small-scale (such as the strategic use of shrubbery and other vegetation) to the overarching, including building form of an entire urban neighborhood and the amount of opportunity for “eyes on the street”.

ILMA Classroom 06.png
Image Source: School Security – Threat and Vulnerability Assessments

Sources:

The National Association of School Psychologists (NASP)

The National Association of School Psychologists (NASP) School Violence Prevention

The National Association of School Psychologists (NASP) Framework For Safe Schools

ILMA Classroom 10.pngILMA Classroom 09.pngILMA Classroom 08ILMA Classroom 07

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 

 

 

 

 

 

 


What Can Architects Do To Design Safer Classrooms For Our Children? Part 1: Door Security Guidelines

 ILMA Classroom 01.pngPhoto Source: The National Association of School Psychologists (NASP)

The increased number of school violence has created a growing public concern for safety in schools across North America and around the world. Each year, school administrators are faced with the challenge of finding ways of improving student safety from an active shooter situation despite budget cuts forcing them to defer costs for security upgrades. Unfortunately, these necessary improvements are put off, and only revisited after a horrific tragedy, such as a deadly school shooting. As a result of this type of reactionary response, coupled with mounting pressure from parent organizations, several states have or are considering changes to their building codes to allow for the installation of classroom door barricade devices. While these devices are perceived to provide immediate security, they have the significant potential to facilitate unintended consequences that could put students at even more risk and the school in risk of liability. (Source: “The Liability of Classroom Door Barricades” by Door Security & Safety Foundation)

Active Shooter Graph.pngModifying building codes to allow for door barricade devices might keep a gunman out of classrooms, but the unintended consequences associated with the devices could put children at even more risk and the school in liability. Yet, many states are seeking to change their codes under the false pretenses that door barricade devices are the only product that can secure a classroom. (Source: “Opening the Door to School Safety” by Door Security & Safety Foundation)

Door barricade devices in schools are intended to keep dangerous individuals out of classrooms, but what if that person is already in the room?

(Source: “Door barricade devices” by Door Security & Safety Foundation)

The National Association of State Fire Marshals “Guidelines” address door security devices, which are mandatory in many states as they are included as part of the International Building and Fire Codes and Life Safety Codes. They mandate that that locking mechanisms should be able to do the following: (1) provide immediate egress by being located between 34” and 48” above the floor, and not require special knowledge or effort, nor key or tool, nor require tight grasping, twisting, or pinching to operate, and accomplished with one operation; (2) be easily lockable in case of emergency from within the classroom without opening the door; (3) lockable and unlockable from outside the door.

Is your school secure in the event of a lockdown situation or an active shooter scenario? Safety isn’t just about closing the door; it’s also about opening it.

The National Association of State Fire Marshals recommends what classroom locking mechanisms can and should do. Follow these 3 easy steps to see if your classroom door locks meet these recommendations: (1) Opens from inside the room without requiring tight grasping, pinching or twisting of the wrist, and accomplished with one operation; (2) Locked and unlocked from the inside of a classroom without requiring the door to be opened, while still allowing staff entry in an emergency; (3) Locked automatically or have a simple locking mechanism such as a pushbutton, key, card, fob, fingerprint, etc., that can be locked from inside the classroom without having to open the door.

Safety Concerns Associated with Door Barricade Devices:

Non-Code Compliant:

  • These products fall short of building code requirements.
  • In most cases, these devices are not tested through the formal code process to ensure that the proper balance of life safety and security are met.

Delayed Response:

  • When someone, other than the classroom teacher, who doesn’t know where the barricade device is kept or how to install it properly is required to engage the device this could result in a delay at a critical time.

Unauthorized Engagement:

  • Storing a barricade device in a classroom makes crimes easier to carry out.
  • When used by an unauthorized person, barricades have the significant potential to facilitate unintended consequences such as bullying, harassment or physical violence.
  • According to the Centers for Disease Control and Prevention (CDC) and the FBI, a member of the student body is most likely to commit violence on school grounds.

Blocked Entry:

  • Because these devices are intended to serve as a barricade and prevent access from the outside, a staff member or emergency responder would not be able to enter a classroom.
  • The intruders who carried out school shootings at Virginia Tech, the West Nickel Mines School and Platte Canyon High School each used materials to barricade the doors.
  • School districts looking to install classroom door barricades devices must also weigh the possibility of an exit being blocked during an emergency.
  • In the event of a fire, these devices could delay egress resulting in fatalities.
  • Fire is one of the leading reasons, in addition to countless other tragedies, that building codes have been adopted.
  • A case could be made by someone injured in a barricaded classroom against the school district because they failed to keep him or her safe while on school property.
  • The injured party could claim he or she was trapped inside a locked classroom with no way for safety officers to enter freely.
  • School administrators should only consider traditional, tested, locking products that meet the code requirements for providing life safety in addition to security.
  • These products allow the door to be locked from the inside of a classroom without requiring the door to be opened, yet allow authorized access by staff and emergency responders in case someone inside the room intends to cause harm or injury.

(Source: The Liability of Classroom Door Barricades by Door Security & Safety Foundation)

According to testimony presented to the Sandy Hook 1 “Barricade Device? Think Twice!” Lori Greene, AHC/CDC, FDAI, FDHI, CCPR. Doors & Hardware, May 2015. Advisory Commission, there is not one documented incident of an active shooter breaching a locked classroom door by defeating the lock. Maintaining a balance of life safety and security is possible today using proven products that meet the NFPA 101 Life Safety Code. New devices being introduced may provide some level of additional security but can seriously compromise certain other aspects of life safety; that is why we have codes and standards. Unfortunately, these devices do not meet codes and may negatively affect life safety in the case of other emergencies such as a fire, which statistically is more than three times more likely to happen than an active shooter situation.  (Source: Final Report Of The Sandy Hook Advisory Commission)

What are we trying to correct if there is not one documented incident of a classroom lock being defeated?” Based on the statistics cited by the National Center for Education Statistics (NCES), to allow these products to be employed when they do not meet the codes is to put the public at greater harm.

  • “In 2012, students ages 12–18 were victims of about 1,364,900 nonfatal victimizations at school, including 615,600 thefts and 749,200 violent victimizations, 89,000 of which were serious violent victimizations.”
  • “During the 2009–10 school year, 85 percent of public schools recorded that one or more of these incidents of violence, theft, or other crimes had taken place, amounting to an estimated 1.9 million crimes.”
  • “During the 2011–12 school year, 9 percent of school teachers reported being threatened with injury by a student from their school. The percentage of teachers reporting that they had been physically attacked by a student from their school in 2011–12 (5 percent) was higher than in any previous survey year (ranging from 3 to 4 percent).”

(Source: DSSF White Paper Classroom Door Security)

When considering the selection of hardware which allows classroom doors to be lockable from inside the classroom, consideration should be given to the risks and potential consequences of utilizing a device which blocks the classroom door from the inside. For example, devices which prevent classroom doors from being unlocked and openable from outside the classroom may place the inhabitants of the room in peril. In addition to the requirement that classroom doors must be unlatchable in a single motion from inside the classroom (discussed above), these doors should always be unlockable and openable from outside the classroom by authorized persons.

RealView-Emergency-trends-infographic-FINAL.jpgSchool Security – Suggested Classroom Door Checklist

The “School Security – Suggested Classroom Door Checklist” identifies many parameters which should be satisfied when selecting and installing hardware on classroom doors intended to increase security in the classroom. (Source: Fire Marshals Classroom Door Security)

  • The door should be lockable from inside the classroom without requiring the door to be opened;
  • Egress from the classroom through the classroom door should be without the use of a key, a tool, special knowledge, or effort;
  • For egress, unlatching the classroom door from inside the classroom should be accomplished with one operation;
  • The classroom door should be lockable and unlockable from outside the classroom;
  • Door operating hardware shall be operable without tight grasping, tight pinching, or twisting of the wrist;
  • Door hardware operable parts should be located between 34 and 48 inches above the floor;
  • The bottom 10 inches of the “push” side of the door surface should be smooth;
  • If the school building does not have an automatic fire sprinkler system, the classroom door and door hardware may be required to be fire-rated and the door should be self-closing and self latching;
  • If the door is required to be fire-rated, the door should not be modified in any way that invalidates the required fire-rating of the door and / or door hardware;
  • In the Suggested Classroom Door Checklist, “should” is used throughout. However, based upon building codes, life safety codes, fire codes, and federal, state, and / or local laws and regulations that are applicable to a particular school, these requirements may be MANDATORY. Always check, and comply with, all applicable building and fire codes, life safety codes, and laws, regulations and other requirements.

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 

 


What Can Architects Do To Design Safer Classrooms For Our Children? Part 2: Ideas & Safety Tips For Schools

ILMA Classroom 03.pngPhoto Source: The National Association of School Psychologists (NASP)

Safety Experts and Architects recommend that schools:

  1. Build a sturdy set of double doors at front entrance to control access.
  2. Position classrooms away from the front entrance.
  3. Install an intercom and a sturdy transaction window at front entrance.
  4. Separate and clearly mark a parent drop-off lane and a bus lane.
  5. Keep parking lot a distance away from school.
  6. Glaze first-floor windows with bullet-proof film or glass.
  7. Remove parking space signs reserved for specific people, which can indicate whether an administrator is inside.
  8. Number classrooms with signs that are visible down inside hallways and from outside the building.
  9. Install locks on all classroom and office doors.
  10. Trim shrubbery or trees that hug the building
  11. Install surveillance cameras
  12. Place bollards in front of the school building
  13. Compartmentalize after-school activities in one part of the building so the rest of the building can be secured after-hours

ILMA Classroom 04.pngImage Source: School Security – Threat And Vulnerability Assessments

Sources:

School Safety Infrastructure Council

Architecture and simple fixes can help improve school safety

Further Reading:

Door Barricades, Egress Requirements and Campus Safety

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


YOU DECIDE – What Is Beautiful?

“This is the old approach to LEGO toys. It failed because it required too much risk on the part of parents and kids—the risk of making something that wasn’t perfect or expected.”

-Seth Godin

LEGO

Read more here about educating our children.

My Child’s LEGO project:

20130204-012406.jpg

Click here to learn more about our LEGO project.

Also Check Out:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.