The 12 P’s: A Guideline of Design for Architects & Other People Who Want to Save the World and Design Like an Architect #ilmaBlog

  1. Principles
  2. Purpose
  3. People
  4. Production
  5. Planet
  6. Projects
  7. Programming
  8. Process
  9. Passion
  10. Perks
  11. Profits
  12. Practicality

Subscribe to our blog for updates on each of the 12 doctrines.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Some Ideas to Help Aruba Become the Greenest and Happiest Island #Sustainability #Planning #Architect #Island #Eco #Green #ilmaBlog

Having recently visited Aruba earlier this year, and have fallen in love with the island, I would like to take this moment to reflect on ways that the little island nation can achieve its sustainability goals over the next several years.  Over the past few years it has come a long way but there are still many things left to be addressed if it is to be the greenest happiest little island in the Caribbean as it has set out to do.

One Happy Island

Some background information before we begin — Aruba contains 70 square miles (178.91 square kilometers) of happiness and a population of 116,600 (as of July 2018).

The tiny island gem is nestled in the warm southern Caribbean with nearly 100 different nationalities happily living together. We welcome all visitors with sunny smiles and a warm embrace.

Aruba is an island and a constituent country of the Kingdom of the Netherlands in the southern Caribbean Sea, located about 990 miles (1,600 kilometers) west of the main part of the Lesser Antilles and 18 miles (29 kilometers) north of the coast of Venezuela. It measures 20 miles (32 kilometers) long from its northwestern to its southeastern end and 6 miles (10 kilometers) across at its widest point.

Together with Bonaire and Curaçao, Aruba forms a group referred to as the ABC islands. Collectively, Aruba and the other Dutch islands in the Caribbean are often called the Dutch Caribbean. Aruba is one of the four countries that form the Kingdom of the Netherlands, along with the Netherlands, Curaçao, and Saint Maarten; the citizens of these countries are all Dutch nationals. Aruba has no administrative subdivisions, but, for census purposes, is divided into eight regions. Its capital is Oranjestad. Unlike much of the Caribbean region, Aruba has a dry climate and an arid, cactus-strewn landscape. This climate has helped tourism as visitors to the island can reliably expect warm, sunny weather. Fortunately, it lies outside Hurricane Alley.

Aruba’s economy is based largely on tourism with nearly 1.5 million visitors per year, which has contributed to Aruba’s high population density.

Despite having one of the world’s smallest populations, Aruba does have a high population density at 1,490 per square mile (575 people per square kilometer), which is more than New York state.

During the Rio +20 United Nations Conference on Sustainable Development in 2012, the island announced it aim to cover its electricity demand by 100% renewable sources by 2020. In the same year, Aruba together with other Caribbean islands became member of the Carbon War Room’s Ten Island Challenge, an initiative launched at the Rio +20 Conference aiming for islands to shift towards 100% renewable energy. The benefits of becoming 100% renewable for Aruba include: reducing its heavy dependency on fossil fuel, thus making it less vulnerable to global oil price fluctuations, drastically reducing CO2 emissions, and preserving its natural environment.

(Sources: https://www.100-percent.org/aruba/; https://en.wikipedia.org/wiki/Aruba; http://worldpopulationreview.com/countries/aruba-population)

Some of the areas where Aruba seems to be excelling includes their recent ramp up of wind power – capitalizing on the constant wind that keep the tiny island habitable.

Other areas that they can improve on include the following:

Electric Vehicles

A whopping 87 percent of the entire power generation in the Caribbean comes from imported fossil fuels, and because so much of the region’s fuel comes from faraway sources, electricity costs are four times higher than they are in the United States. The economies of these islands are basically at the whim of global oil prices

The Caribbean has some other reasons to be enthusiastic about electric cars powered by a solar electric grid. The islands, on the whole, are small and low in elevation. The vast majority of islands in the Caribbean are smaller than 250 square miles and are fairly flat, with isolated peaks at most. 

This combination makes them ideal for electric vehicles in ways that, just for example, the U.S. is not. Most electric vehicles have limited ranges, with some only offering a hundred miles or less per charge. The higher-end vehicles can go further; the Nissan Leaf boasts 151 miles per charge, the Chevy Bolt 238 miles, and the Tesla Model S 315, but with still-long waiting times for a full charge, that’s about all you’re getting in an individual trip. That’s not great for hour-plus-long commutes from American suburbs, but for smaller islands with fewer hills to climb, that sort of range is just fine.

Customers who drive electric experience common benefits.

  • Charging up with electricity will cost you less than filling your tank with gas. Clients are experiencing savings of up to 50 percent on fuel costs and very low cost of maintenance.
  • Produce no-to-low tailpipe emissions. Even when upstream power plant emissions are considered, electric vehicles are 70 percent cleaner than gas-powered vehicles.
  • “Fuel” up with clean, Aruban-produced electricity and help our island achieve more energy diversity.
  • Drivers enjoy electric vehicles’ silent motor, powerful torque and smooth acceleration.

Although “solar” vehicles would be even better for this region, the ability for the island to “leap frog” ahead of other counties by building in an electric fueling infrastructure would help set it apart from other island nations.

(Sources: http://nymag.com/developing/2018/10/more-like-electric-car-ibbean.html; https://www.elmar.aw/about-elmar/sustainable-energy-and-electric-cars)

Solar Power

Although solar has come down over the past decade I was surprised that not more individuals capitalize on the sunny region with solar roof panels.

The recently constructed government building, Cocolishi, is one of the first buildings on Aruba with a solar roof. The solar panels provide 30 kW of renewable energy.

On the rooftops of the Multifunctional Accommodation Offices (MFA) in Noord and Paradera solar panels are installed. The MFA in Noord is an energy neutral building, this means it produces the same amount of energy as it consumes. The surplus during sunny days will be added to the grid.

Previously, solar panels were installed on the Kudawecha elementary school. These panels produce 175.5 kW solar energy.

The largest school solar rooftop project is installed on the Abramham de Veer School elementary school. This rooftop project produces 976 kW renewable energy.

The Caribbean’s first solar park opened in 2015 over the parking lot of the airport in Aruba. This solar park provide 3.5 MW solar energy and is one of the first renewable energy projects making use of the Free Zone of Aruba.

In Juana Morto, a residential area complex, solar panels are installed on the rooftops of different houses. Together the solar panels generate 13 kW of green energy.

Elmar, the electricity provider of Aruba, installed solar panels on the roofs of their offices. These buildings together provide 9.8 kW solar energy.

There are different decentralized solar projects on Aruba. Together they consist of 5 MW solar PV part and 3 MW rooftop schools & public buildings PV systems. Once built per the 2017 plan, the installation will provide an additional 13.5 MW providing power for approximately 3,000 households.

Given the amount of sunshine this island receives, expanding their solar portfolio seems prudent.

(Source: https://www.freezonearuba.com/business-opportunities/solar-projects-aruba/)

Wind Power

Wind Park ‘Vader Piet’ is located on Aruba’s east coast in the Dutch Caribbean, this wind farm consists of 10 turbines with an actual capacity of 30 megawatts (MW). Aruba’s current wind power production represents about 15-20 percent of its total consumption, which places it fourth globally and still some way behind Denmark, the current global leader, which produces 26 percent of its power from wind. But today, with a second wind farm about to be deployed, Aruba is set to double its wind energy output, placing it firmly in first place.

It’s hard to believe that just a few windmills are able to produce an output of 30 megawatts of energy, suppling 126,000 MWh of electricity to the national grid each year, displacing fossil fuel-generated energy and supporting the island’s transition towards renewable energy sources.

Given that the wind is a constant, exploiting this resource seems like a profitable and intelligent thing to do.

(Source: https://www.utilitiesarubanv.com/main/embracing-the-winds-of-change/)

Off-Roading

I love that the island has embraced off-road vehicles (ORV); it is a great way to experience the beauty around us in a challenging and fun way adding to the experience.  However, it would be very wise to develop designated areas for off-road vehicles to eliminate (or at least minimize) the human impact on the beauty of this island.  Because it’s greatest commodity is the natural beauty – Sun, ocean, nature and wildlife; Aruba (and other island nations) need to consider how to balance the fun aspect with some regulations that will preserve the beauty of the natural world for future generations.

As you may already know, the use ORV’s on coastal beaches is an activity that attracts considerable controversy amongst beach users.

ORV driving is considered as main contributor to land degradation in arid regions.

The most obvious physical impacts of ORV on vegetation include plant crushing, shearing, and uprooting. Such destruction of vegetation in arid ecosystems can lead to land degradation and desertification. Desert plant species exhibit varying degrees of vulnerability to vehicle use intensity, which results in changes in vegetation composition, height, biomass, reproductive structures, cover and seedbank.

(Sources: https://serc.carleton.edu/vignettes/collection/35397.html; https://www.sciencedirect.com/science/article/pii/S1319562X18301153)

I also notice that many locals and tourists park their vehicles on the shorelines which are inhabited by indigenous plants and animals of all varieties.  This too should be lightly regulated through education or ordinances so that leaky old (or new) vehicles do not stain the natural shorelines that not only belong to us but to our grandchildren’s grandchildren as well.  We need to educate people to be more responsible and not disrupt the natural world with our cars , especially when it can be easily avoided with very little cost impact to the planning of the island.

Stormwater

Following up on vehicle management along the shorelines, another thing I noticed was stormwater runoff; which is not much but should be managed now to avoid a small accumulation over time.  It is still early enough to employ best practices and manage any future problems by building a robust infrastructure now before things get worse.  Because the island is so small it looks like much of the run off drains directly into the ocean.  Following best practices will ensure that the clear waters stay that way long into the future for the benefit and enjoyment of future generations.

Circumstances alone should prompt islanders to manage stormwater runoff:

  • Traditional community boundaries often centered on natural drainages (e.g., Hawaiian ahupua’a and Samoan village structure), so residents are aware of how land use changes can affect watershed hydrology.
  • Local economies rely on clear waters, healthy reefs, and robust fisheries; thus, BMPs designed to eliminate sediment plumes offer immediate, visible results to resource users.
  • In some locations, rainfall is the primary source of freshwater, so using BMPs like cisterns or storage chambers to collect runoff for potable and non-potable reuse makes water supply sense.
  • Tropical vegetation is fast-growing and plays a huge part in the water cycle, so stormwater management approaches that take advantage of canopy interception and evapotranspiration to reduce runoff have a high chance of success.
  • Island infrastructure is subject to big storms, rising seas, and tsunamis; therefore redundancy within the stormwater system improves resiliency.

Things that should be considered as the island faces increased development includes the engagement of “low impact development” which is an approach to land development that meets the following conditions:

  1. Avoids disturbance of existing vegetation, valuable soils, and wetlands to the maximum extent possible (e.g., minimizing site disturbance and maintaining vegetated buffers along waterways);
  2. Reduces the amount of impervious cover and, thus, stormwater runoff generated on a site through careful site planning and design techniques; and
  3. Manages runoff that is generated through structural and non-structural practices that filter, recharge, reuse, or otherwise reduce runoff from the site.

(Source: https://horsleywitten.com/pdf/Feb2014_IslandBMPGuide_wAppendix.pdf)

Desalinization

Tasked with providing water for a population which more than quadruples with tourists throughout the year, the Caribbean island of Aruba is building a new 24,000 m3/day (6,340,130 gallons) desalination facility to process seawater from beach wells. Paul Choules & Ron Sebek discuss technical details of the installation, set to replace older thermal desalination units.

This is so awesome and could become a really great way for Aruba to expand its market into other emerging countries that are facing water issues.  Abruba could use its extensive knowledge to help other arid climates deal with lack of drinking water, taking Aruba to the next level as a global leader in this realm.

(Source: https://www.waterworld.com/international/desalination/article/16201943/desalination-plant-profile-aruba-the-pearl-of-the-caribbean)

Cogeneration of Power

Justin Locke is director of the island energy program at the Carbon War Room, an international nonprofit. He said it makes sense for islands to switch to clean power.

“Islands currently pay some of the highest electricity prices in the world. At the same time, they also have some of the best renewable energy resources,” added Locke. Aruba’s plan includes building new solar and wind farms, converting waste to energy, and working to increase energy efficiency.

Aruba has set the ambitious goal of becoming the first green economy by transitioning to 100% renewable energy use. Currently, Aruba is at 20% renewable energy use.

Aruba is known for being sunny all year long and its cooling trade winds. By capitalizing on these natural resources, the island can generate renewable energy. The island is lowering its dependence on heavy fuel oil, lowering CO2 emissions, and reducing environmental pollution.

By steadily continuing its momentum with its green movement and implementing cogeneration of power production it will help the island become sustainable and resilient.

(Source: https://www.netherlandsandyou.nl/your-country-and-the-netherlands/united-states/about-us/aruba-and-you/sustainability-in-aruba)

Conclusion

Although Aruba has promised to become green it is not absolutely clear that it will be able to achieve its aggressive 2020 goals.  However, the future is bright if Aruba is able to continue on its path and starts to take these issues into greater consideration making it a premier destination for people to enjoy.  Becoming the world’s greenest island will ensure that tourism continues to flourish and that the country will continue to thrive in an environmentally-friendly way that will help restore and maintain the attributes that has made it what it has become famous for – a place for people from all over the world to come and enjoy the natural world away from the hustle and bustle of city life and experience the world in a way that seems to be reminiscent of a simpler time and offers us a chance to connect with something much larger than ourselves.  As temporary stewards for the environment it is up to us to protect that which does not belong to us so that future generations can also appreciate these valuable experiences.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


The @FelicianoCenter’s @MIXLabDesign Design Charrette for “B.E.L.A.” Summer High School Program Entailing the Redevelopment of a Significant Urban Historic Site #UrbanPlanning #Redevelopment #Business #Entrepreneur #Education #HighSchool #DesignThink #Innovation #NJEd @MontclairStateU

On July 9, 2019, in the capacity of University Architect at Montclair State University (and Alumni of the Feliciano School of Business). I had the privilege of participating in a design charrette with a local high school. The project consists of an urban redevelopment site with a precious historical building at the site. I was invited by the people who run the Montclair State University MIX Lab (Feliciano Center for Entrepreneurship), an interdisciplinary hub for transformative innovation, and digitally mediated making.

M.I.X. stands for Making and Innovating for X, where X is the unknown, that which exceeds our grasp, the future, and the open-ended nature of creativity, good design and big problems. The co-directors of MIX Lab are Iain Kerr, associate professor of Innovation Design, and Jason Frasca, entrepreneurship instructor.

I graciously accepted Jason and Ian’s invitation to participate as a guest critic along with another fellow professional, Frank Gerard Godlewski of Fellsbridge Studio LLC, who specializes in historic preservation in the area where the redevelopment project is located.  The format for the design charrette, hosted by the MIX Lab for the high school program led by high school teacher, Kevin Richburg, included: (1) The students, in groups of 4-5, presented their concepts for the redevelopment of the site (there were 5 teams); (2) the guest critics gave suggestions and further thoughts on how to further explore and develop the student’s ideas; (3) the guest critics summed up their thoughts for all the students with key take-aways.  The following is a recap of what I learned from the students (in so far as what is the most significant to them) and the key take-aways I offered the students (in no particular order of importance) from my perspective as an Architect who has been involved in the planning, design and construction of projects over the past 20-years.

What the Student Teams Focused on as Key Ideas for their Projects:

  • Historic preservation of the existing building
  • Connecting with local community
  • Local and state pride
  • Affordability
  • Sustainability
  • Celebration of diversity and inclusion
  • Love of the arts
  • Focus on the user “experience”
  • Spaces for families to enjoy
  • Entertainment
  • Accessibility to quality food and goods
  • Mixing of “Bright and Bold” historic and modern elements
  • Transformative
  • “Modern” vibe

Proposed Amenities of the Re-Development Site:

  • Supermarkets (one group proposed a two-story whole sale supermarket)
  • Open-air markets (farmer markets, etc.)
  • Retail, restaurants, food trucks
  • Open space, a square or plaza
  • Parking for visitors (possible tunnel or bridge)
  • Parking at perimeter

Types of Buildings (Programmed Spaces)

  • Main historic building’s exterior appearance
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail

Types of Exterior Spaces

  • Open spaces with green lawns and fountains
  • Places to reflect and remember
  • ·Field with stage and seating
  • Outdoor seating for restaurants
  • Areas to relax

Key Take-Aways & Ideas for Further Exploration:

  • Site plans – Delineate site elements separately from building elements (so easier to comprehend) using color or graphics (Example)
  • Floor plans – Delineate building areas/rooms with designated color so it is easier to understand program of spaces (i.e., circulation vs apartments vs retail vs support spaces, etc.) (Example)
  • Work together as a team – commemorate each other’s strengths but give everyone credit even those whose work may be behind the scenes
  • Focus on one main idea (let other ideas support the one main theme)
  • Context and Scale – Observe and learn from the surrounding community; apply those elements to the proposed project so that it complements the adjoining communities
  • Materials – Understand how the new materials can complement the historic ones (let the original historic building stand on its own and celebrate its historical significance)
  • Consider “big box” retail versus the Local “pop ups” (gentrification good and bad)
  • Parking/Transportation – As mass transportation has changed from ships to locomotives to buses and cars; look to the future as the world heads to autonomous vehicles (particularly China).  If parking is required think about how a parking lot or parking garage can be transformed in the future.  Example
  • Sustainability is important but do not forget to consider W.E.L.L. as well.  LEED/Sustainability concepts Resource 1 ; Resource 2 also check out the following link for ides about other program types for the redevelopment project Resource 3
  • Consider more technology in your projects, for instance: Smart CitiesAR/VR, and other innovate concepts, like: Immersive Experience and Virtual reality in theme park attractions. Also consider utilizing QR Codes as a teaching tool.
  • Consider developing a pedestrian mall by converting an existing street into a pedestrian friendly zone like they have done in Jersey City, NJ or Times Square, New York City, NY or Fremont Street Experience in Downtown Las Vegas, NV, the taking cars, trucks and buses off the street and giving the spaces back to the pedestrians who can enjoy it (also it would make the entire site one big site instead of two separate parcels dived by thru traffic).
  • Lastly, and not least important, when considering injecting modern elements with historic architecture, it must be considered whether the original is to remain intact or be altered.  There are interesting examples of tasteful alterations, however, the older I get the less comfortable I am with injecting new with old for the sake of “shock” value (where as a student of architecture 20 years ago the concept was more appealing).  I reminded the students of Notre Dame Cathedral in Paris, France, and the ensuing debate that is going on whether or not the renovations/upgrades should be true to the original or whether the new design should be bold and innovating and perhaps less true to the original.  Whether the designers choose to go in one direction or another much thought should be given to preserving the historical elements of our precious structures because they are irreplaceable (think Grand Central Station in New York City, NY, which acted as a catalyst for the preservation movement).  Click here to read about the history of the Preservation Battle of Grand Central Station.

Overall, I was impressed by the talent and creativity of all the students and I was pleased with the quality of their presentations. I hope I was able to contribute in some small way to the success of their respective projects.  The high school student participants’ contributions to the build environment would be welcomed by the design and construction industry, since the students are willing to understand and develop their skills in the area of deep thought, innovation, design, construction and socio-economic concepts at an early age.  I gladly encouraged each and every one of them by letting them know that if they choose a career in architecture, engineering, real-estate development, construction or related field that they would certainly all be able to achieve their goals based on their willingness and eagerness to learn and present their visions and concepts.   I hope my involvement was as rewarding for the students as it was for me.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Bring Your Children to Work Day at @MontclairStateU #ArchWeek19 #CitizenArchitect #BlueprintForBetter #ilmaBlog #Architecture #UniversityArchitect

Brief Announcement
On April 25th, Frank Cunha III & Michael Chiappa participated in a Bring Your Children to Work Day at MSU where we were able to teach the children about architecture, planning, design and construction. We showed them the old ways, the current ways and the future ways that architects envision projects and help build the world around us.

About Bring Your Children to Work Day
National Take Our Daughters and Sons to Work Day is recognized on the fourth Thursday in April each year. This annual event is an educational program in the United States and Canada where parents take their children to work with them for one day.

Presentation
The following is the slideshow we presented to the children:

About the Event
This year some of the parents decided to focus on STEM and what it means to be an Architect….a profession that is both creative and artistic, yet methodical and scientific. We explored what it means to be an Architect and other STEM fields and how anyone, regardless of gender, race, religion or ethnicity can aspire to do great things. Architecture is just one of many pathways where we can lead through change and technology. We looked at old blue prints, 3-D modeling, 3-D printing, building materials, using our original 1908 building (College Hall) for context in describing the process and all of the wonderful people that it takes to conceive of a project — We looked at interior design and site design as part of the overall architectural design of a campus. We emphasized, that although not all the children will decide to become architects, it is important to understand what architects do and how to understand how we think and how/what we do. We all need to learn from each other and work as a team to get things done. It was exciting to see the children work with the campus hand on when we had them work on an interactive puzzle of the campus. One of the students said: ” The campus is like a small city.” It was really fulfilling to see that she understood that the university is like a small city. It felt great to make an impact and promote architecture to young children.

Coincidentally, Architecture Week is held every April as part of the American Institute of Architects (AIA) nationwide celebration of our built environment, so that made the day even more special to me.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


New Campus Center at Springfield Technical Community College #UniversityArchitect #Rehabilitation #Community #College #Architecture #Transformation #ilmaBlog

All Photos: Chuck Choi

Combining historic preservation, adaptive reuse, and contemporary architecture, Springfield Technical Community College’s new Campus Center repurposes a 764-foot-long by 55-foot-wide warehouse building originally constructed between 1846 and 1864.

A major aspect of the Springfield, Massachusetts, University’s Campus Center is The Ira H. Rubenzahl Student Learning Commons. The Campus Center and Student Learning Commons consolidate academic services and student life activities under one roof. Corten steel canopies along the building’s facade distinguish new entrances into each hub.

Click Here to read the rest of the story.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


THE SPIRIT OF CAMPUS DESIGN: A reflection on the words of Werner Sensbach #Campus #Planning #Design #University #Architect

Montclair State University
Photo Credit: Mike Peters

In 1991, Werner Sensbach, who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia, wrote a paper titled “Restoring the Values of Campus Architecture”. The paragraphs that follow were excerpted from that article. They seem particularly appropriate to Montclair State University as it looks at its present campus facilities and forward to the planning of future facilities on a piece of land of spectacular beauty.

Nearly two thousand years ago, the Roman architect Vitruvius wrote that architecture should provide firmness, commodity, and delight. It is the definition of “delight” that still troubles us today. This is especially so on college campuses. Many who try to give voice to what it is that brings delight in a building or an arrangement of buildings may mention the design, the placement on the site, the choice of building materials, the ornamentation, or the landscaping. But mostly it’s just a feeling, or a sense that things are arranged just right, or a sensation of pleasure that comes over us. So academics, like nearly everyone else, often are unsure when planning for new campus construction about what is likely to be delightful. Even though the United States has 3,400 colleges, while most other advanced nations only have a few dozen, we simply have not developed in the United States a sensibility, a vocabulary, a body of principles, an aesthetic for campus architecture.

That each campus should be an “academic village” was one of Thomas Jefferson’s finest architectural insights. Higher learning is an intensely personal enterprise, with young scholars working closely with other scholars, and students sharing and arguing about ideas, religious beliefs, unusual facts, and feelings. A human scale is imperative, a scale that enhances collegiality, friendships, collaborations on research.

I believe the style of the campus buildings is important, but style is not as important as the village-like atmosphere of all the buildings and their contained spaces. University leaders must insist that architects they hire design on a warm, human scale. Scale, not style, is the essential element in good campus design. Of course, if an inviting, charming campus enclosure can be combined with excellent, stylish buildings so much the better.

The third imperative for campus planners, the special aesthetic of campus architecture, or the element of delight, is the hardest to define. It is the residue that is left after you have walked through a college campus, a sense that you have been in a special place and some of its enchantment has rubbed off on you. It is what visitors feel as they enjoy the treasures along the Washington Mall, or others feel after leaving Carnegie Hall, Longwood Gardens in southeastern Pennsylvania, Chartres Cathedral, the Piazza San Marco in Venice, or the Grand Canyon.

On a college campus the delight is generated by private garden spaces in which to converse, by chapel bells at noon or on each hour, by gleaming white columns and grand stairways, by hushed library interiors, by shiny gymnasiums and emerald playing fields, by poster-filled dormitory suites, by a harmony of windows and roofs, and by flowering trees and diagonal paths across a huge lawn. The poet Schiller once said that a really good poem is like a soft click of a well-made box when it is being closed. A great campus infuses with that kind of satisfaction.

In my view, American’s colleges and universities—and especially their physical planners—need three things to become better architectural patrons. One is a renewed sense of the special purpose of campus architecture. A second is an unswerving devotion to human scale. The third is a sense of the uncommon and particular aesthetic—the delight—that a college or university campus demands.

A surprisingly large sector of the American public has conceded a special purpose to higher education. College campuses have provided a special place for those engaged in the earnest pursuit of basic or useful knowledge, for young people devoted to self-improvement, and for making the country smarter, wiser, more artful, and more able to deal with competitor nations.

Therefore, college and university campuses have a distinct and separate purpose, as distinct as the town hall and as separate as a dairy farm. For most students the four to seven years spent in academic pursuits on a university campus are not only an important period of maturing from adolescence to adulthood but also years of heightened sensory and creative ability, years when the powers of reasoning, feeling, ethical delineations, and aesthetic appreciation reach a degree of sharpness as never before. During college years, young minds absorb impressions that often last for a lifetime: unforgettable lectures, noisy athletic contests, quiet hours in a laboratory or library, jovial dormitory banter, black-robed commencements, encounters with persons of radically different views, the rustle of leaves, transfigured nights. The American college campus serves superbly as an example of Aristotle’s idea of a good urban community as a place “where people live a common life for a noble end.”

Montclair State University
Photo Credit: Mike Peters

No architect should be permitted to build for academe unless he or she fully appreciates that his or her building is an educational tool of sorts. New buildings should add to the academic ambiance and enrich the intellectual exchanges and solitary inquiries. They should never be a mere personal statement by the architect or a clever display of technical ingenuity or artistic fashion.

Campus facilities planners need to be sure that the architects they choose are able to incorporate surprise, touches of whimsy, elegance, rapture, and wonder into their constructions. This special campus aesthetic is definitely not a frill. It is what graduates remember decades after they have left the college, and what often prompts them to contribute money to perpetuate the delight. It is what captures high school juniors and their parents in their summer pilgrimages to numerous college campuses to select those two or three institutions to which they will apply.

I think the best way to preserve the particular values of the American college campus is through a three-pronged effort:

The first is to recognize that the village-like university campus is a unique American architectural creation. No other nation has adopted the “academic village” as an architectural and landscaping form, though the ancient Oxbridge colleges came close. Academic leaders should become more knowledgeable about the distinctiveness of their campus communities and more proud of and assertive about maintaining the values of this inventive form.

Second, universities should have a broadly representative and expert blue-ribbon committee to watch over all new construction, not leave it to the vice president for administration, a facilities planner, or a trustee committee. The campus environment should be guarded and enhanced as carefully as the quality of the faculty.

Third, each college and university should draw up a set of design guidelines to help it become a patron who can list what is essential in its campus architecture. These guidelines will differ from campus to campus, but nearly all institutions should include concern for the three fundamentals: academic purpose, human scale, and a special campus aesthetic. Architects can de- sign more effectively and sympathetically if they understand the expectations of the college.

Although these words were written in 1991, they remain true today as Montclair State University continues to grow its enrollment, academic programs, research programs…and the facilities that serve them.

Source: “Restoring the Values of Campus Architecture” by Werner Sensbach (who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia)

For a list of my projects: Click Here

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Smart Cities

Smart-City-in-a-BoxSmart cities use data and technology to create efficiencies, improve sustainability,
create economic development, and enhance quality of life factors for people living and
working in the city. It also means that the city has a smarter energy infrastructure.

(Source: https://en.m.wikipedia.org/wiki/Smart_city)

  • Emerging trends such as automation, machine learning and the internet of things
    (IoT) are driving smart city adoption.
  • Smart transit companies are able to coordinate services and fulfill riders' needs in real time, improving efficiency and rider satisfaction. Ride-sharing and bike-sharing are also common services in a smart city.
  • Energy conservation and efficiency are major focuses of smart cities. Using smart sensors, smart streetlights dim when there aren't cars or pedestrians on
    the roadways. Smart grid technology can be used to improve operations, maintenance and planning, and to supply power on demand and monitor energy
    outages.
  • Using sensors to measure water parameters and guarantee the quality of
    drinking water at the front end of the system, with proper wastewater removal
    and drainage at the back end.
  • Smart city technology is increasingly being used to improve public safety, from
    monitoring areas of high crime to improving emergency preparedness with sensors. For example, smart sensors can be critical components of an early warning system before droughts, floods, landslides or hurricanes.
  • Smart buildings are also often part of a smart city project. Legacy infrastructure can be retrofitted and new buildings constructed with sensors to not only provide real-time space management and ensure public safety, but also to monitor the structural health of buildings.
    Singapore Financial District skyline at dusk.
  • Smart technology will help cities sustain growth and improve efficiency for citizen
    welfare and government efficiency in urban areas in the years to come.
    Water meters and manhole covers are just a couple of the other city components
    monitored by smart sensors. Free and/or publicly available Wi-Fi is another perk smart cities often include.
  • San Diego installed 3,200 smart sensors in early 2017 to optimize traffic and parking
    and enhance public safety, environmental awareness and overall livability for its
    residents. Solar-to-electric charging stations are available to empower electric vehicle use, and connected cameras help monitor traffic and pinpoint crime.
  • Often considered the gold standard of smart cities, the city-state of Singapore uses
    sensors and IoT-enabled cameras to monitor the cleanliness of public spaces, crowd
    density and the movement of locally registered vehicles. Its smart technologies help
    companies and residents monitor energy use, waste production and water use in real time. Singapore is also testing autonomous vehicles, including full-size robotic buses, as well as an elderly monitoring system to ensure the health and well-being of its senior citizens.
  • In Dubai, United Arab Emirates, smart city technology is used for traffic routing, parking, infrastructure planning and transportation. The city also uses telemedicine and smart healthcare, as well as smart buildings, smart utilities, smart education and smart tourism.
    Smart City Barcelona Spain
  • The Barcelona, Spain, smart transportation system and smart bus systems are complemented by smart bus stops that provide free Wi-Fi, USB charging stations and bus schedule updates for riders. A bike-sharing program and smart parking app that includes online payment options are also available. The city also uses sensors to monitor temperature, pollution and noise, as well as monitor humidity and rain levels.

(Sources: https://internetofthingsagenda.techtarget.com/definition/smart-city and https://www.engadget.com/2016/11/03/singapore-smart-nation-smart-city/)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook