University Architect @FrankCunhaIII Leads Architectural Walking Tour of @MontclairStateU’s Campus for Architect Guests, @AIANJ AIA Newark Suburban #AIA #University #Architect

On May 18th, AIA Newark Suburban held a campus walking tour of Montclair State University led by fellow member, Architect Frank Cunha III, AIA.  The tour addressed the history of the campus and the way it has been designed and constructed to protect and promote the health, safety, and welfare of the occupants of the buildings and grounds.

Building on a distinguished history dating back to 1908, Montclair State University is a leading institution of higher education in New Jersey.  Designated a Research Doctoral University by the Carnegie Classification of Institutions of Higher Education, the University’s 11 colleges and schools serve more than 21,000 undergraduate and graduate students with more than 300 doctoral, master’s and baccalaureate programs. Situated on a beautiful, 252-acre suburban campus just 12 miles from New York City, Montclair State delivers the instructional and research resources of a large public university in a supportive, sophisticated and diverse academic environment. University Facilities currently manages 70 buildings and approximately 5 million gross square feet of space on our campus. More information available: https://www.montclair.edu/about-montclair

Frank Cunha III, AIA, University Architect, has been with the University Facilities team since 2007.  Since graduating from the New Jersey Institute of Technology School of Architecture in 1998, he has obtained licenses to practice architecture in 9 states.  Frank is currently completing his Masters in Business Administration at Montclair State University and expects to graduate in May 2019.

Frank is passionate about strategic planning, architectural design and constructing of complex projects in a challenging and ever-changing environment.  He considers the environment, energy, and the health and wellness of the occupants during all phases of the project while addressing the programming needs to ensure the stakeholder’s program requirements are met and align with the organization’s mission, vision and values.

With the assistance of his design and construction teams, Frank has been responsible for many projects of various size and scope around campus. Some project highlights include: Student Recreation Center, Center for Environmental Life Sciences, Cali School of Music, School of Nursing, the Center for Computing and Information Science, Sinatra Hall, School of Business, Schmitt Hall and historic renovation and addition to College Hall, to name a few.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Warning: Only you can make a difference – Global smog recorded at all time high by Mauna Loa Observatory #Environment #ThinkGreen #Eco #ilmaBlog

At the Mauna Loa Observatory in Hawaii, carbon dioxide levels were recorded at 415 parts per million last week. That is the highest level recorded there since it began such analyses in 1958. It’s also 100 parts per million higher than any point in the roughly 800,000 years for which scientists have data on global CO2. In other words, “levels of carbon dioxide in the atmosphere are now nearly 40 percent higher than ever in human history.” [Popular Science]

Governments of the world need to triple their current efforts to reduce greenhouse-gas emissions in order to prevent global warming of more than 2 °C by 2030, the United Nations Environment Programme (UNEP) said in its annual “emissions gap” report (Nov 27, 2018).

Drawdown Emissions – Big Ideas

Some “big think” solutions for CO2 gas emissions reduction can be found at the Drawdown website. These recommendations have been identified and ranked using an objective scientific method. Many of these ideas require engineering and scientific solutions, therefore, we offer the following as methods that you can get started today in doing your part towards reducing the emissions of C02.

Ten Ways to Reduce Greenhouse Gases – Start Small

Burning fossil fuels such as natural gas, coal, oil and gasoline raises the level of carbon dioxide in the atmosphere, and carbon dioxide is a major contributor to the greenhouse effect and global warming. You can help to reduce the demand for fossil fuels, which in turn reduces global warming, by using energy more wisely. 

The following is a list of 10 steps YOU can take to reduce greenhouse gas emissions:

  1. Reduce, Reuse, Recycle
  2. Use Less Heat and Air Conditioning
  3. Replace Your Light Bulbs
  4. Drive Less and Drive Smart
  5. Buy Energy-Efficient Products
  6. Use Less Hot Water
  7. Use the “Off” Switch
  8. Plant a Tree          
  9. Get a Report Card from Your Utility Company
  10. Encourage Others to Conserve

These 10 steps found at this website will take you a long way toward reducing your energy use and saving you money. Less energy use means less dependence on the fossil fuels that create greenhouse gases and contribute to global warming.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Ask the Architect: Why Does Indoor Air Quality Matter?#LEED #WELL #Health #Wellness #Safety #Architect #ilmaBlog

Simply put, indoor air quality matters because human beings are spending more and more time indoors. It is becoming more important than ever to make sure that the buildings that we design, construct and occupy are suitable and safe for the occupants. The following article will draw on both research and experience in the design and construction of high performance buildings to help elaborate on this simple response.

Interesting Facts To Consider About Indoor Air Quality:

  • Indoor air often contains 4X to 10X the amount of pollutants of outdoor air.
  • Many studies have linked exposure to small particles (PM 2.5—defined as airborne particles smaller than 2.5 microns) with heart attacks, cardiac arrhythmias, strokes, chronic obstructive pulmonary disease, worsened symptoms of asthma, and an increased risk of respiratory illness.
  • The World Health Organization says that particulate matter contributes to about 800,000 premature deaths each year, making it the 13th leading cause of death worldwide.

The built environment around us plays a fundamental role in our overall well-being, particularly the indoor spaces that we inhabit to live, work, learn, play and pray, since most of us spend about 90% of our time indoors.  The buildings that we as Architects design and construct have a distinctive capability to positively or negatively impact our health and wellbeing. The air that we breathe inside a building can have a greater consequence on our health.  Unfortunately, many contaminants are not visible in the air, so we might not know that they are there.  Inhaling air or poor quality can lead to a number of health conditions, including but not limited to:  allergies, respiratory disorders, headaches, sore throat, lethargy and nausea.

Sick Building Syndrome

According to the EPA, sick building syndrome (SBS) is used to describe a situation in which the occupants of a building experience acute health- or comfort-related effects that seem to be linked directly to the time spent in the building. No specific illness or cause can be identified. The complainants may be localized in a particular room or zone or may be widespread throughout the building.

LEED Requirements

As more buildings are LEED certified, here are some things to consider about your next project:

To contribute to the comfort and well-being of building occupants by establishing minimum standards for indoor air quality (IAQ) after construction and during occupancy, USGBC LEED v4 requires that the project meet one of the following:

  • Minimum indoor air quality performance: Option 1. ASHRAE Standard 62.1–2010 or Option 2. CEN Standards EN 15251–2007 and EN 13779–2007.
  • Indoor air quality assessment: Path 1 Option 1. Flush-out, or Path 2. Option 1. During occupancy, or Path 2. Option 2. Air testing – Note: these cannot be combined.

Occupants are increasingly paying more attention to the conditions of their work environment as it relates to health and wellness. This is especially the case for researchers and their lab environments. We see surging growth in universities adopting lab design programs such as Smart Labs which places an emphasis in the indoor environment quality of the lab and through certification programs as:

We need to have a real-time measurement of the all contaminants of inside air and match that with real time control of the outside air coming into the environment. Ideally, we need to design and build facilities that:

  • Bring in lots of outside air—but only exactly where and when we need it.
  • Measures and controls more than just temperature and CO2.
  • Displays the ventilation performance for the building’s occupants.

Health and Cognitive FunctionPerformance Enhancements

Cognitive functions encompass reasoning, memory, attention, and language and lead directly to the attainment of information and, thus, knowledge. United Technologies and The Harvard School of Public Health prepared a study that was designed to simulate indoor environmental quality conditions in green and conventional buildings and evaluate the impacts on an objective measure of human performance—cognitive function.  The findings of the report concluded that the impact of the indoor air quality on the productivity of the occupants which revealed the following benefits:

  • Lowering the levels of CO2 and VOCs resulted in their participants scoring 61% higher on cognitive function tests compared with those in conventional offices.
  • There was a 101% improvement on their cognitive function tests when the ventilation levels were doubled above the standard ASHRAE prescribed levels.
  • Information usage scores were 299% higher than conventional offices when the ventilation rates were doubled.

The conclusion of this study is very clear: verified ventilation performance will increase employee and student performance.

Sources & References:

Is Your Building Ventilated Like It’s 1978? By Tom Kolsun

USGBC V4 Requirements for indoor environmental quality

Further Reading:

EPA – An Office Building Occupants Guide to Indoor Air Quality

#IAQmatters

EPA – Indoor Air Quality

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

For More Questions and Answers please check out:
Architects @WJMArchitect And @FrankCunhaIII Respond to ILMA Fan’s Questions “ASK THE ARCHITECT”

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Architect’s Follow Up on the Cathedral of Notre-Dame de Paris and Creating Safer Work Environments #UnderConstruction #Safety #Design #Architecture #LessonsLearned #SafetyFirst #Design #Build #Architect #ilmaBlog

Follow Up on the Cathedral of Notre-Dame de Paris and Creating Safer Work Environments

A few weeks ago on April 15th, 2019, a fire destroyed the roof and wooden spire of the Notre-Dame de Paris.

One of the most famous timber frame fires started just after midnight on the 2nd September 1666 in Pudding Lane. After burning for three days it destroyed nearly 90 percent of the inhabitants of London’s homes.

Getty Images

Possible Causes For Blaze

Although officials say that the investigation could last several weeks and nothing can be ruled out at this time, there is much suspicion that the blaze may have been started by a short-circuit near the spire.

The short circuit may have been possibly caused by electrified bells, or negligence by construction workers carrying out the ongoing renovations, a theory fueled by the discovery of cigarette butts.

Typical Sources of Ignition

Not related to the fire, but for a matter of reference, sources of ignition during construction may generally include: (1) Hot works – cutting, grinding, soldering, hot pitching; (2) Faulty electrical equipment – damaged sockets and equipment, service strikes, temporary supplies and halogen lighting; (3) Arson – works in high crime rate areas, protests and objections to the scheme, disgruntled employees or contractors; (4) Reactive chemicals; (5) Fire Loading; (6) Fire Spread – The Offsite Risks; (7) and Constrained sites.   It will be interesting to see what the investigators are able to uncover in the following weeks.

André Finot, the cathedral’s spokesman, pointed out traces of damage. “Everywhere the stone is eroded, and the more the wind blows, the more all of these little pieces keep falling,” he said. (Photo Credit: Dmitry Kostyukov for The New York Times)

Ongoing Renovations

Fallen stones on the cathedral’s roof. Experts say that the building has reached a tipping point and that routine maintenance is no longer enough to prevent rain, wind and pollution from causing lasting damage. (Photo Credit: Dmitry Kostyukov for The New York Times)
Masonry that has broken away or that was taken down as a precautionary measure has been piled up on a small lawn at the back of the cathedral. (Photo Credit: Dmitry Kostyukov for The New York Times)

According to the New York Times, the biggest renovation at the cathedral took place between 1844 and 1864 when the spire and the flying buttresses were rebuilt.  The most recent overhaul, however, was meant to be understated. “The idea isn’t to replace every single stone. I don’t want to give this cathedral a face-lift,” said Philippe Villeneuve, the chief architect behind the project.  The renovations, which are estimated to cost $150 million euro ($169 million) were still ongoing when the cathedral caught fire.  Most likely something to do with the renovations of the cathedral led to its temporary demise.

Design Input

The event, which occurred during holy week sparked an intense national debate on how the 856-year-old cathedral should be rebuilt.  The French public will get a say on how the fire-ravaged Notre Dame cathedral will be rebuilt, officials say. 

FYI: In a separate blog post, ILMA plans to do a write up on the current designs that are being suggested by Architects and designers around the world.

Construction Workers – Risk Management

As a matter of course, this heartbreaking occurrence give us pause to consider the threats that can occur during construction.  Some risks to workers that need to be managed during construction and renovations include the following: (1) Working at Height; (2) Slips, Trips and Falls; (3) Moving Objects; (4) Noise; (5) Manual Handling; (6) Vibrations; (7) Collapses; (8) Asbestos; (9) Electricity; (9) Respiratory diseases. (Sources: Top 10 construction health and safety risks) and OSHA’s Top Four Construction Hazards); From the perspective of keeping the building safe during renovations and/or construction and saving lives, the following should be considered:

Building Safety – Risk Management

  1. Installation of sprinkler systems and fire detection systems early on in construction
  2. Availability of standpipes
  3. Commissioning the sprinkler system
  4. Access to fire extinguishers
  5. Make sure your fire detection and warning systems work
  6. Maintaining means of egress; Building compartmentation and protected fire routes in as the building is constructed
  7. Protect emergency escape routes
  8. Secure the site against arson
  9. Protect temporary buildings and accommodation
  10. Store equipment safely
  11. Design out hot works
  12. Keep the site tidy
  13. Keep project site and equipment safe
  14. No smoking
  15. Increase security for the site – CCTV, Full height hoarding, signage
  16. Engagement of local fire departments – to assess water pressure and accessibility
  17. Proper fire risk assessment that considers fire loading and fire separation distances

Learning From the Tragedy of the Cathedral of Notre-Dame de Paris

As timber is becoming increasingly more popular in high rises it is important to consider the past when managing the risks of projects utilizing wood framing.  Although there are many studies and test on modern day timber/wood designs, it is still important to consider the risks that are present on any jobsite.  Spending the money to do construction the right way will help reduce the inherent risks with construction – both to safeguard people as well as the buildings that we cherish.

For more information on my take on what happened at Notre Dame, please consider checking out the original articles: Personal Reflection on the Tragedy of April 15, 2019 at Notre Dame Cathedral in Paris and What Makes Notre Dame Cathedral So Important as a Work of Architecture?.

Additional Reading:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Will Higher Education Look Like 5, 10 or 20 Years From Now? Some Ways Colleges Can Reinvent Themselves #iLMA #eMBA #Innovation #Technology #Planning #Design #HigherEducation #HigherEd2030 #University #Architect

Introduction

Change is a natural and expected part of running a successful organization. Whether big or small, strategic pivots need to be carefully planned and well-timed. But, how do you know when your organization is ready to evolve to its next phase? Anyone that listens, watches, or reads the news knows about the rising cost of higher education and the increasing debt that education is putting on students and alumni and their families.

At a time when education is most important to keep up with increasing technological changes, institutions need to pivot or face imminent doom in an ever increasing competitive environment. Competition can come from startups or external factors in the higher education market therefore it is increasingly necessary for institutions of higher learning to take a different approach to their business operations.

This post will focus on:

  • Current Trends
  • Demographic Shifts
  • Future of Higher Education (and impacts on University Facilities & Management)
    • Changing Assumptions
    • Implications for the Physical Campus
    • Changing Trajectory
    • More Trends in Higher Education (Towards 2030)
  • Driving Technologies
  • External Forces

Current Trends

  • Online education[i] has become an increasingly accepted option, especially when “stackable” into degrees.
  • Competency-based education lowers costs and reduces completion time for students.
  • Income Share Agreements[ii] help students reduce the risk associated with student loans.
  • Online Program Manager organizations benefit both universities and nontraditional, working-adult students.
  • Enterprise training companies are filling the skills gap by working directly with employers.
  • Pathway programs facilitate increasing transnational education[iii], which serves as an additional revenue stream for universities.

Demographic Shifts

According to data from the National Clearinghouse and the Department of Education[iv]:

  • The Average Age of a College/University Student Hovers Around Twenty-Seven (Though That Is Decreasing as The Economy Heats Up)
  • 38% of Students Who Enrolled In 2011 Transferred Credits Between Different Institutions At Least Once Within Six Years.
  • 38% of Students Are Enrolled Part-Time.
  • 64% of Students Are Working Either Full-Time or Part-Time.
  • 28% of Students Have Children of Their Own or Care For Dependent Family Members.
  • 32% of Students Are from Low-Income Families.
  • The Secondary Education Experience Has an Increasingly High Variation, Resulting In Students Whose Preparation For College-Level Work Varies Greatly.

Future of Higher Education (and impacts on University Facilities & Management)

The future of higher education depends on innovation. 

University leaders who would risk dual transformation are required to exercise full commitment to multiple, potentially conflicting visions of the future. They undoubtedly confront skepticism, resistance, and inertia, which may sway them from pursuing overdue reforms.[v]

Change is upon us.

“All universities are very much struggling to answer the question of: What does [digitization[vi]] mean, and as technology rapidly changes, how can we leverage it?” . . . . Colleges afraid of asking that question do so at their own peril.”[vii]

James Soto Antony, the director of the higher-education program at Harvard’s graduate school of education.

Changing Assumptions

Until recently the need for a physical campus was based on several assumptions:

  • Physical Class Time Was Required
  • Meaningful Exchanges Occurred Face to Face
  • The Value of an Institution Was Tied to a Specific Geography
  • Books Were on Paper
  • An Undergraduate Degree Required Eight Semesters
  • Research Required Specialized Locations
  • Interactions Among Students and Faculty Were Synchronous

Implications for the Physical Campus

  • Learning – Course by course, pedagogy is being rethought to exploit the flexibility and placelessness of digital formats while maximizing the value of class time.
  • Libraries – Libraries are finding the need to provide more usable space for students and faculty.  Whether engaged in study, research or course projects, the campus community continues to migrate back to the library.
  • Offices – While the rest of North America has moved to mobile devices and shared workspaces, academic organizations tend to be locked into the private, fixed office arrangement of an earlier era – little changed from a time without web browsers and cell phones. 
  • Digital Visible – From an institutional perspective, many of the implications of digital transformation are difficult to see, lost in a thicket of business issues presenting themselves with increasing urgency. 

Changing Trajectory

University presidents and provosts are always faced with the choice of staying the course or modifying the trajectory of their institutions.  Due to failing business models, rapidly evolving digital competition and declining public support, the stakes are rising.  All should be asking how they should think about the campus built for the 21st century.[viii]  J. Michael Haggans[ix] makes the following recommendations:

  • Build no net additional square feet
  • Upgrade the best; get rid of the rest
  • Manage space and time; rethink capacity
  • Right-size the whole
  • Take sustainable action
  • Make campus matter

More Trends in Higher Education (Towards 2030)

  • The Rise of The Mega-University[x]
  • ; Public Private Partnerships (P3’s) Procurement Procedures Will Become More Prevalent
  • More Colleges Will Adopt Test-Optional Admissions
  • Social Mobility Will Matter More in College Rankings
  • Urban Colleges Will Expand[xi] — But Carefully
  • Financial Crunches Will Force More Colleges to Merge
  • The Traditional Textbook Will Be Hard to Find; Free and Open Textbooks
  • More Unbundling and Micro-Credentials
  • Continued Focus on Accelerating Mobile Apps
  • Re-Imagining Physical Campus Space in Response to New Teaching Delivery Methods
  • Transforming the Campus into A Strategic Asset with Technology
  • Education Facilities Become Environmental Innovators
  • Ethics and Inclusion: Designing for The AI Future We Want to Live In
  • Visibility (Transparency) And Connectedness
  • Sustainability from Multiple Perspectives
  • Better Customer Experiences with The Digital Supply Chain
  • Individualized Learning Design, Personalized Adaptive Learning
  • Stackable Learning Accreditation
  • Increased Personalization: More Competency-Based Education They’ll Allow Students to Master A Skill or Competency at Their Own Pace.
  • Adaptation to Workplace Needs They’ll Adapt Coursework to Meet Employer Needs for Workforce Expertise
  • Greater Affordability and Accessibility They’ll Position Educational Programs to Support Greater Availability.
  • More Hybrid Degrees[xii]
  • More Certificates and Badges, For Example: Micro-Certificates, Offer Shorter, More Compact Programs to Provide Needed Knowledge and Skills Fast[xiii]
  • Increased Sustainable Facilities – Environmental Issues Will Become Even More Important Due to Regulations and Social Awareness; Reduced Energy Costs, Water Conservation, Less Waste
  • Health & Wellness – Physical, Spiritual and Metal Wellbeing
  • Diversity and Inclusion Will Increase
  • Rise of The Micro-Campus[xiv] And Shared Campuses[xv]
  • E-Advising to Help Students Graduate
  • Evidence-Based Pedagogy
  • The Decline of The Lone-Eagle Teaching Approach (More Collaboration)
  • Optimized Class Time (70% Online, 30% Face to Face)
  • Easier Educational Transitions
  • Fewer Large Lecture Classes
  • Increased Competency-Based and Prior-Learning Credits (Credit for Moocs or From “Real World” Experience)[xvi]
  • Data-Driven Instruction
  • Aggressive Pursuit of New Revenue
  • Online and Low-Residency Degrees at Flagships
  • Deliberate Innovation, Lifetime Education[xvii]
  • The Architecture of The Residential Campus Will Evolve to Support the Future.
  • Spaces Will Be Upgraded to Try to Keep Up with Changes That Would Build In Heavy Online Usage.
  • Spaces Will Be Transformed and Likely Resemble Large Centralized, Integrated Laboratory Type Spaces. 
  • Living-Learning Spaces in Combination Will Grow, But On Some Campuses, Perhaps Not In The Traditional Way That We Have Thought About Living-Learning To Date.

Driving Technologies:

  • Emerging Technologies – Such as Augmented Reality, Virtual Reality, And Artificial Intelligence – Will Eventually Shape What the Physical Campus Of The Future Will Look Like, But Not Replace It.[xviii]
  • Mobile Digital Transformation[xix]
  • Smart Buildings and Smart Cities[xx]
  • Internet of Things
  • Artificial Intelligence (AI), Including Natural Language Processing
  • Automation (Maintenance and Transportation Vehicles, Instructors, What Else?)
  • Virtual Experience Labs, Including: Augmented Reality, Virtual Reality Learning, And Robotic Telepresence 
  • More Technology Instruction and Curricula Will Feature Digital Tools and Media Even More Prominently
  • New Frontiers For E-Learning, For Example, Blurred Modalities (Expect Online and Traditional Face-To-Face Learning to Merge)[xxi]
  • Blending the Traditional; The Internet Will Play Bigger Role in Learning
  • Big Data: Colleges Will Hone Data Use to Improve Outcomes

External Forces:

  • [xxii]: Corporate Learning Is A Freshly Lucrative Market
  • Students and Families Will Focus More on College Return On Investment, Affordability And Student Loan Debt
  • [xxiii]
  • Greater Accountability; Schools will be more accountable to students and graduates
  • Labor Market Shifts and the Rise of Automation
  • Economic Shifts and Moves Toward Emerging Markets
  • Growing Disconnect Between Employer Demands and College Experience 
  • The Growth in Urbanization and A Shift Toward Cities 
  • Restricted Immigration Policies and Student Mobility
  • Lack of Supply but Growth in Demand
  • The Rise in Non-Traditional Students 
  • Dwindling Budgets for Institutions[xxiv]
  • Complex Thinking Required Will Seek to Be Vehicles of Societal Transformation, Preparing Students to Solve Complex Global Issues

Sources & References:


[i] Online education is a flexible instructional delivery system that encompasses any kind of learning that takes place via the Internet. The quantity of distance learning and online degrees in most disciplines is large and increasing rapidly.

[ii] An Income Share Agreement (or ISA) is a financial structure in which an individual or organization provides something of value (often a fixed amount of money) to a recipient who, in exchange, agrees to pay back a percentage of their income for a fixed number of years.

[iii] Transnational education (TNE) is education delivered in a country other than the country in which the awarding institution is based, i.e., students based in country Y studying for a degree from a university in country Z.

[iv] Article accessed on April 16, 2019: https://er.educause.edu/articles/2019/3/changing-demographics-and-digital-transformation

[v]Article accessed on April 16, 2019: https://ssir.org/articles/entry/design_thinking_for_higher_education

[vi] Digitization is the process of changing from analog to digital form.

[vii] Article accessed on April 16, 2019:  https://qz.com/1070119/the-future-of-the-university-is-in-the-air-and-in-the-cloud

[viii] Article accessed on April 16, 2019: http://c21u.gatech.edu/blog/future-campus-digital-world

[ix] Michael Haggans is a Visiting Scholar in the College of Design at the University of Minnesota and Visiting Professor in the Center for 21st Century Universities at Georgia Institute of Technology.  He is a licensed architect with a Masters of Architecture from the State University of New York at Buffalo.  He has led architectural practices serving campuses in the US and Canada, and was University Architect for the University of Missouri System and University of Arizona.

[x] Article accessed on April 16, 2019:  https://www.chronicle.com/interactives/Trend19-MegaU-Main

[xi] Article accessed on April 16, 2019:  https://www.lincolninst.edu/sites/default/files/pubfiles/1285_wiewel_final.pdf

[xii] Article accessed on April 16, 2019: https://www.fastcompany.com/3046299/this-is-the-future-of-college

[xiii] Article accessed on April 16, 2019: https://www.govtech.com/education/higher-ed/Why-Micro-Credentials-Universities.html

[xiv] Article accessed on April 16, 2019: https://global.arizona.edu/micro-campus

[xv] Article accessed on April 16, 2019: https://evolllution.com/revenue-streams/global_learning/a-new-global-model-the-micro-campus

[xvi] Article accessed on April 16, 2019:  https://www.chronicle.com/article/The-Future-Is-Now-15/140479

[xvii] Article accessed on April 16, 2019:  https://evolllution.com/revenue-streams/market_opportunities/looking-to-2040-anticipating-the-future-of-higher-education

[xviii] Article accessed on April 16, 2019: https://www.eypae.com/publication/2017/future-college-campus

[xix] Article accessed on April 16, 2019: https://edtechmagazine.com/higher/article/2019/02/digital-transformation-quest-rethink-campus-operations

[xx] Article accessed on April 16, 2019: https://ilovemyarchitect.com/?s=smart+buildings

[xxi] Article accessed on April 16, 2019: https://www.theatlantic.com/education/archive/2018/04/college-online-degree-blended-learning/557642

[xxii] Article accessed on April 16, 2019: https://qz.com/1191619/amazon-is-becoming-its-own-university

[xxiii] Article accessed on April 16, 2019: https://www.fastcompany.com/3029109/5-bold-predictions-for-the-future-of-higher-education

[xxiv] Article accessed on April 16, 2019: https://www.acenet.edu/the-presidency/columns-and-features/Pages/state-funding-a-race-to-the-bottom.aspx

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Personal Reflection on the Tragedy of April 15, 2019 at Notre Dame Cathedral in Paris, France #Paris #Fire #NotreDame #Reflection #Architecture #CarpeDiem

Reflection on the Tragedy of April 15, 2019

This week is Holy Week, when millions of Western Christians mark the death and resurrection of Jesus. Under normal circumstances, Notre Dame cathedral in Paris would have been preparing to display its holy relics to the faithful on Good Friday.

But as fire engulfed the sacred site on April 15, 2019, Catholics across the world reacted in horror and disbelief, particularly when the cathedral’s iconic spire toppled amid the flames.

For generations, Notre Dame Cathedral has been a place of pilgrimage and prayer, and, even as religion in France has declined for decades, it remained the beating heart of French Catholicism, open every day for Mass.

Source: CNN

REFLECTION

When something that is tragic like the Notre Dame Cathedral fire occurs, it is important to take time to reflect on what happened.  First, I look at this tragedy as a Christian, then as the grandson of European immigrants, and finally as an Architect.  I reflect on these recent events using three distinct but entwined lenses:

  • As a Christian, I reflect on what it means to be Christian.  Although imperfect, we are all put on Earth to accomplish great things.  Some have more than others, but we all have our crosses to bear.  As Easter approaches, for many Christians around the world who celebrate this holiest of days it is a time of reflection and hope of things to come.  As Jesus said, you are not of this world (we belong to Him).  When these events happen it also makes us aware of our fleeting earthly lives.
  • As a grandson of Europeans, I feel a strong camaraderie with my neighbors in France.  As technology helps the world shrink we are becoming global citizens.  But as someone who has spent many summers and taken many trips to Europe (probably more than 30 trips over my four decades), I feel a strong connection to what happens in Europe.  I have the same feeling in my stomach that I had when 9-11 happened in New York City.  We take for granted that these beautiful structures will always be here with us.  These events remind us that we must cross off trips that are on our bucket lists sooner rather than later.
  • As an Architect, my primary objective is to safeguard the public.  Sure, I love great design and inspiring spaces as much as the next designer.  However, being an Architect means that we must put safety above all else.  When these events occur, I cannot help but think how vulnerable we are.  As Architects we are always trying to evoke safety and security into our projects – Many times decisions are made with money more than risk aversion.  A 100% safeguard world is not possible, but I challenge my fellow Architects to consider ways that we can educate and confront our clients to ensure that all our buildings are safe.  We are all human with earthly perspectives and we are all bound to mistakes as we manage economics with safety.  Take for example, the Seton Hall student housing fires that changed safety for campus of higher educations around the country.  Can this tragedy bring some good? Perhaps as leaders in our industry we can shape the safety and preservation of our landmarks and new building projects to ensure the safety of the occupants.

Churches, castles and forts are the primary reason I chose this profession. Whenever we lose a structure of significance it is like losing a loved one. Like life itself, our art and architecture must be cherished because it is all temporary after all. Carpe Diem.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


THE SPIRIT OF CAMPUS DESIGN: A reflection on the words of Werner Sensbach #Campus #Planning #Design #University #Architect

Montclair State University
Photo Credit: Mike Peters

In 1991, Werner Sensbach, who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia, wrote a paper titled “Restoring the Values of Campus Architecture”. The paragraphs that follow were excerpted from that article. They seem particularly appropriate to Montclair State University as it looks at its present campus facilities and forward to the planning of future facilities on a piece of land of spectacular beauty.

Nearly two thousand years ago, the Roman architect Vitruvius wrote that architecture should provide firmness, commodity, and delight. It is the definition of “delight” that still troubles us today. This is especially so on college campuses. Many who try to give voice to what it is that brings delight in a building or an arrangement of buildings may mention the design, the placement on the site, the choice of building materials, the ornamentation, or the landscaping. But mostly it’s just a feeling, or a sense that things are arranged just right, or a sensation of pleasure that comes over us. So academics, like nearly everyone else, often are unsure when planning for new campus construction about what is likely to be delightful. Even though the United States has 3,400 colleges, while most other advanced nations only have a few dozen, we simply have not developed in the United States a sensibility, a vocabulary, a body of principles, an aesthetic for campus architecture.

That each campus should be an “academic village” was one of Thomas Jefferson’s finest architectural insights. Higher learning is an intensely personal enterprise, with young scholars working closely with other scholars, and students sharing and arguing about ideas, religious beliefs, unusual facts, and feelings. A human scale is imperative, a scale that enhances collegiality, friendships, collaborations on research.

I believe the style of the campus buildings is important, but style is not as important as the village-like atmosphere of all the buildings and their contained spaces. University leaders must insist that architects they hire design on a warm, human scale. Scale, not style, is the essential element in good campus design. Of course, if an inviting, charming campus enclosure can be combined with excellent, stylish buildings so much the better.

The third imperative for campus planners, the special aesthetic of campus architecture, or the element of delight, is the hardest to define. It is the residue that is left after you have walked through a college campus, a sense that you have been in a special place and some of its enchantment has rubbed off on you. It is what visitors feel as they enjoy the treasures along the Washington Mall, or others feel after leaving Carnegie Hall, Longwood Gardens in southeastern Pennsylvania, Chartres Cathedral, the Piazza San Marco in Venice, or the Grand Canyon.

On a college campus the delight is generated by private garden spaces in which to converse, by chapel bells at noon or on each hour, by gleaming white columns and grand stairways, by hushed library interiors, by shiny gymnasiums and emerald playing fields, by poster-filled dormitory suites, by a harmony of windows and roofs, and by flowering trees and diagonal paths across a huge lawn. The poet Schiller once said that a really good poem is like a soft click of a well-made box when it is being closed. A great campus infuses with that kind of satisfaction.

In my view, American’s colleges and universities—and especially their physical planners—need three things to become better architectural patrons. One is a renewed sense of the special purpose of campus architecture. A second is an unswerving devotion to human scale. The third is a sense of the uncommon and particular aesthetic—the delight—that a college or university campus demands.

A surprisingly large sector of the American public has conceded a special purpose to higher education. College campuses have provided a special place for those engaged in the earnest pursuit of basic or useful knowledge, for young people devoted to self-improvement, and for making the country smarter, wiser, more artful, and more able to deal with competitor nations.

Therefore, college and university campuses have a distinct and separate purpose, as distinct as the town hall and as separate as a dairy farm. For most students the four to seven years spent in academic pursuits on a university campus are not only an important period of maturing from adolescence to adulthood but also years of heightened sensory and creative ability, years when the powers of reasoning, feeling, ethical delineations, and aesthetic appreciation reach a degree of sharpness as never before. During college years, young minds absorb impressions that often last for a lifetime: unforgettable lectures, noisy athletic contests, quiet hours in a laboratory or library, jovial dormitory banter, black-robed commencements, encounters with persons of radically different views, the rustle of leaves, transfigured nights. The American college campus serves superbly as an example of Aristotle’s idea of a good urban community as a place “where people live a common life for a noble end.”

Montclair State University
Photo Credit: Mike Peters

No architect should be permitted to build for academe unless he or she fully appreciates that his or her building is an educational tool of sorts. New buildings should add to the academic ambiance and enrich the intellectual exchanges and solitary inquiries. They should never be a mere personal statement by the architect or a clever display of technical ingenuity or artistic fashion.

Campus facilities planners need to be sure that the architects they choose are able to incorporate surprise, touches of whimsy, elegance, rapture, and wonder into their constructions. This special campus aesthetic is definitely not a frill. It is what graduates remember decades after they have left the college, and what often prompts them to contribute money to perpetuate the delight. It is what captures high school juniors and their parents in their summer pilgrimages to numerous college campuses to select those two or three institutions to which they will apply.

I think the best way to preserve the particular values of the American college campus is through a three-pronged effort:

The first is to recognize that the village-like university campus is a unique American architectural creation. No other nation has adopted the “academic village” as an architectural and landscaping form, though the ancient Oxbridge colleges came close. Academic leaders should become more knowledgeable about the distinctiveness of their campus communities and more proud of and assertive about maintaining the values of this inventive form.

Second, universities should have a broadly representative and expert blue-ribbon committee to watch over all new construction, not leave it to the vice president for administration, a facilities planner, or a trustee committee. The campus environment should be guarded and enhanced as carefully as the quality of the faculty.

Third, each college and university should draw up a set of design guidelines to help it become a patron who can list what is essential in its campus architecture. These guidelines will differ from campus to campus, but nearly all institutions should include concern for the three fundamentals: academic purpose, human scale, and a special campus aesthetic. Architects can de- sign more effectively and sympathetically if they understand the expectations of the college.

Although these words were written in 1991, they remain true today as Montclair State University continues to grow its enrollment, academic programs, research programs…and the facilities that serve them.

Source: “Restoring the Values of Campus Architecture” by Werner Sensbach (who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia)

For a list of my projects: Click Here

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook