The 7 Dimensions of Building Information Modeling

It has increasingly become crystal clear that BIM represents the opening of the architectural design community and construction industry to interoperability. There is no doubt that it’s a long and tedious way to being fully developed, however, important steps have been made during the last decades and the future of construction looks brighter day by day.

What is BIM?
3D-House

Building Information Modeling (BIM) is the process of creating information models containing both graphical and non-graphical information in a Common Data Environment (CDE) (a shared repository for digital project information). The information that is created becomes ever more detailed as a project progresses with the complete dataset then handed to a client at completion to use in the building’s In Use phase and potentially on into a decommissioning phase.

When we talk about BIM maturity we are essentially talking about the supply chain’s ability to exchange information digitally. The maturity levels from Level 0, through Levels 1, 2, 3 and beyond are often visualized via the maturity ‘wedge’ diagram conceived by Mark Bew and Mervyn Richards. Our article on BIM Levels Explained is a good place to start if you’re looking for more information.

BIM dimensions are different to BIM maturity levels. They refer to the particular way in which particular kinds of data are linked to an information model. By adding additional dimensions of data you can start to get a fuller understanding of your construction project – how it will be delivered, what it will cost and how it should be maintained etc. These dimensions – 4D, 5D and 6D BIM – can all feasibly (but not necessarily) occur within a BIM Level 2 workflow.

In this blog post we explore what it means to add different dimensions of information to a BIM process and explore what this looks like in practice and what benefits might be expected.

7D BIM

3D (The Shared Information Model)

3D BIM is perhaps the BIM we are most familiar with – the process of creating graphical and non-graphical information and sharing this information in a Common Data Environment (CDE).

As the project lifecycle progresses this information becomes ever more rich in detail until the point at which the project data is handed over to a client at completion.
4D (Construction sequencing)

4D BIM adds an extra dimension of information to a project information model in the form of scheduling data. This data is added to components which will build in detail as the project progresses. This information can be used to obtain accurate programme information and visualisations showing how your project will develop sequentially.

Time-related information for a particular element might include information on lead time, how long it takes to install/construct, the time needed to become operational/harden/cure, the sequence in which components should be installed, and dependencies on other areas of the project.

With time information federated in the shared information model planners should be able to develop an accurate project programme. With the data linked to the graphical representation of components/systems it becomes easy to understand and query project information and it is also possible to show how construction will develop, sequentially, over time showing how a structure will visually appear at each stage.

Working in this way is enormously helpful when it comes to planning work to ensure it is safely, logically and efficiently sequenced. Being able to prototype how assets come together before ground is broken on site allows for feedback at an early stage and avoids wasteful and costly on-site design co-ordination and rework. Showing how projects will be constructed visually is also handy when engaging with stakeholders, giving everyone a clear visual understanding of planned works and what the finished construction will look like with no surprises.

Adding sequencing information can be extremely useful, not just in the design phase, but earlier too, allowing for the feasibility of schemes to be assessed from the off. At tender stage this kind of information can allow initial concepts to be explored and communicated to inspire confidence in the team’s ability to meet the brief.

It’s important to note that working with 4D information doesn’t negate the need for planners who remain an integral part of the project team. Rather than creating programs as proposals develop, as is the case in traditional workflows, in a digital workflow planners can now influence and shape proposals from a much earlier stage in a project. Indeed, by being closer to the wider project team and providing feedback earlier in the process, there is the potential for planners to add significantly more value to a construction project.

3D-Guggenheim-Model5D (Cost)

Drawing on the components of the information model being able to extract accurate cost information is what’s at the heart of 5D BIM.

Considerations might include capital costs (the costs of purchasing and installing a component), its associated running costs and the cost of renewal/replacement down the line. These calculations can be made on the basis of the data and associated information linked to particular components within the graphical model. This information allows cost managers to easily extrapolate the quantities of a given component on a project, applying rates to those quantities, thereby reaching an overall cost for the development.

The benefits of a costing approach linked to a model include the ability to easily see costs in 3D form, get notifications when changes are made, and the automatic counting of components/systems attached to a project. However, it’s not just cost managers who stand to benefit from considering cost as part of your BIM process. Assuming the presence of 4D program data and a clear understanding of the value of a contract, you can easily track predicted and actual spend over the course of a project. This allows for regular cost reporting and budgeting to ensure efficiencies are realized and the project itself stays within budget tolerances.

The accuracy of any cost calculations is, of course, reliant on the data produced by multiple teams and shared within the Common Data Environment. If that information is inaccurate, so too will be any calculations that rely upon it. In this respect using BIM to consider cost is no different to more traditional ways of working. It is for this reason that quantity surveyors and estimators still have an important role to play, not only in checking the accuracy of information but also in helping to interpret and fill information ‘gaps’. Many elements of a project will still be modelled in 2D or not at all. There’s also likely to be differences between models in how things are classified and the cost manager will need to clarify and understand the commonality between what at first feel like disparate things.

An information model is likely to contain three types of quantity. Quantities based on actual model components (with visible details) which you can explore through the model are the most obvious. Quantities may also be derived from model components (such as moldings around windows) that aren’t always visible. The third kind of quantity is non-modeled quantities (these include temporary works, construction joints etc.). Unless the construction phase is modeled then the design model will show, graphically, design quantities but not the construction quantities. A cost manager is likely to be skilled in picking up the quantities that aren’t solely based on model components.

One of the advantages of extrapolating cost from the information model is the fact that the data can be queried at any time during a project and the information that feeds cost reports is regularly updated. This ‘living’ cost plan helps teams design to budget and because cost managers are engaged from the start of a project this allows for faster, more accurate reporting of costs at the early stages of a project. Compare this to a traditional approach where a cost manager’s report may be updated a few times during the early stages of a project with completed designs only fully costed at the end of the project team’s design process.

The cost manager may have to get used to working earlier and more iteratively than in a traditional process but has just as important a role to play in overall project delivery.

3d-perspective-section-cardigan-street6D BIM (Project Lifecycle Information; Sustainability)

The construction industry has traditionally been focussed on the upfront capital costs of construction. Shifting this focus to better understand the whole-life cost of assets, where most money is proportionately spent, should make for better decisions upfront in terms of both cost and sustainability. This is where 6D BIM comes in.

Sometimes referred to as integrated BIM or iBIM, 6D BIM involves the inclusion of information to support facilities management and operation to drive better business outcomes. This data might include information on the manufacturer of a component, its installation date, required maintenance and details of how the item should be configured and operated for optimal performance, energy performance, along with lifespan and decommissioning data.

Adding this kind of detail to your information model allows decisions to be made during the design process – a boiler with a lifespan of 5 years could be substituted with one expected to last 10, for example, if it makes economic or operational sense to do so. In effect, designers can explore a whole range of permutations across the lifecycle of a built assets and quickly get an understanding of impacts including costs. However, it is at handover, that this kind of information really adds value as it is passed on to the end-user.

A model offers an easily-accessible and understood way of extrapolating information. Details that would have been hidden in paper files are now easily interrogated graphically. Where this approach really comes into its own is in allowing facilities managers to pre-plan maintenance activities potentially years in advance and develop spending profiles over the lifetime of a built asset, working out when repairs become uneconomical or existing systems inefficient. This planned and pro-active approach offers significant benefits over a more reactive one – not least in terms of costs.

Ideally the information model should continue to develop during the In Use phase with updates on repairs and replacements added in. Better yet, a myriad of operational data and diagnostics can also be fed in to inform decision making still further.

3D-Sydney-Opera-House7D (Operations and Facilities Management)

Studies indicate that over 90% of total building lifecycle costs are related to facility maintenance and operations. Real estate and facility managers are increasingly showing interest in using BIM in facility management.

Some of the highlights of effectiveness of utilizing BIM 7D include:

  • Preventative Maintenance Scheduling: BIM can be used to plan and track maintenance activities proactively and appropriately by using the information about the building structure and equipment used in the facility. This type of preventative maintenance activities will help improve building performance, reduce corrective maintenance and emergency maintenance repairs and increase productivity of maintenance staff.
  • Sustainability Analysis: BIM integrated with other analysis & evaluation tools are used to track building performance data, which can be compared with specified sustainable standards to identify the flaws in the building systems. Facility’s sustainability program can be improved to better match the sustainability goals.
  • Asset Management: Assets of a building consist of the physical building, its systems, equipment and surrounding environment. Asset management is essential in short-term and long-term planning for proper upkeep of building assets. The bi-directional Building Information Modeling (BIM) integration into asset management software can help in better visualization of assets and aid in the maintenance and operation of a facility.
  • Space Utilization Management: Facility professionals and department liaisons can utilize BIM to effectively manage, track and distribute appropriate spaces and related resources within a facility. BIM space management application turns out to be beneficial in planning renovation projects and future needs, allocating space for proper usage of each corner of the building and tracking the impact of proposed changes.
  • Disaster & Emergency Planning: BIM can provide critical building information to improve the efficiency of disaster response plans and minimize any risk. BIM can be integrated with building automation system (BAS) to display where the emergency is located within a building, to find possible routes to the affected area and to locate other dangerous areas within the building during such emergencies.

Sources & References:
https://www.autodesk.com/solutions/bim
https://geniebelt.com/blog/bim-maturity-levels

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


Passive Temperature Control and Other Sustainable Design Elements to Consider

With a growing interest in green and sustainable home design, there have been a lot of changes in the way people design their homes. A green, sustainable home is made using different design elements and materials, which help to create a more energy-efficient home that minimizes the homeowner’s negative impact on the environment as much as possible.

From the various sustainable design elements to the materials that help make it happen, there are countless ways for homeowners to create a green, sustainable design that is beautiful. Here is a list of some of the most popular sustainable elements and materials for homeowners to keep in mind when building or renovating their home.

Temperature Control

One of the major points of sustainable home design is concerned with temperature control. Everyone wants a home that stays cool during the warmer months and warm during the colder ones. Although the common method people turn to is air conditioning and heating, neither of these is very energy-efficient nor environmentally friendly. Instead, people are now turning to tried-and-tested sustainable alternatives to cooling and heating.

ICF (Insulated Concrete Forms) homes are one popular sustainable design element that homeowners are turning to for their homes. These ICF homes are made using an insulated concrete form, which fit together like puzzle pieces to form the shell of a new house, which is insulated inside and out. Due to the way the forms are put together—and are supported with extra concrete and rebar—there are very few cracks, which helps minimize the potential for air leaks, therefore increasing the effectiveness of the insulation overall.

All of this combined means that homeowners who choose ICF homes will be able to save a lot of money on cooling and heating costs, and will not be releasing so many harmful greenhouse gases into the environment.

Additionally, temperature control can see improvement through the sort of siding that homeowners select for their home. While traditional vinyl siding is most common, it is not the best option on the market in terms of protecting your home and helping with insulation needs. Other options, like fiber cement siding and steel log siding not only offer more durability, but they also will work better at helping to insulate a home. Due to the materials and how they are put in place, homeowners can rest assured that there will be very few air leaks, especially when combined with a well-insulated home.

Weatherproofing

Another common element found in sustainable home design includes weatherproofing the home. Weatherproofing helps to ensure further that there are no air leaks in the home, regardless of how well insulated it may be. Furthermore, as the term implies, weatherproofing helps to ensure that the home’s structure is well-protected from potential harm that can from the elements. All-in-all, weatherproofing will help ensure a home can hold up against different types of weather and help save the homeowner energy, money, and resources by covering up any air leaks that may still be present even with insulation.

The best way to weatherproof a home is to invest in and install a high-quality house wrap. House wrap is the layer of material that separates a home’s siding from its overall structure. It uses a perforated polyolefin membrane material, which is wrapped tightly around the entire structure and secured with capped fasteners. Because of the material, house wrap is extremely strong and durable, which helps to ensure it will stay in place and last for a long time.

Additionally, a good house wrap will prevent any air infiltration and easily allow moisture to escape, rather than staying trapped and creating a perfect breeding ground for mold and mildew.

Durable Exterior Siding

A third major element of sustainable home design is a good, durable exterior siding. Although vinyl siding is the most known type of exterior home siding, it is not necessarily the most sustainable option available. Similarly, siding options like traditional log siding are also not sustainable nor eco-friendly. Instead, homeowners looking for better, greener siding options that can further increase their home’s sustainability.

One of the most popular sustainable siding options around includes fiber cement siding. Fiber cement siding is a kind of siding resembles the classic wood or vinyl siding, but is made of a much more durable mix of wood pulp and cement. This makes it an option that can stay looking new for years, without warping, fading, or any damage from weather and insects. Because of this durability, homeowners do not have to worry about having to replace pieces over time due to damage, which allows them to save money over time. Additionally, fiber cement siding is a low maintenance option that will add yet another layer of protection to any home, on top of things like house wrap and ICF homes.

Creating a green, sustainable home is not difficult, but it does take a certain level of dedication. Besides choosing the right energy-efficient appliances, homeowners need to ensure that the home’s overall structure is made using sustainable elements and products.

From being aware of temperature control and weatherproofing to finding the perfect exterior siding, there are countless ways to start making a sustainable home. Even if some of these elements go visually unseen, the differences will be seen and felt in the comfort level of the home and the utility bills.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 

 

 


Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design

The types of building materials you use on your home can greatly affect the sustainability and design for years to come. Here are some high-quality, green building materials to look into for your home.

Home-2

Solar Reflective Roofing Shingles

Having high-quality roofing shingles on your house is important to help your home stay protected longer.  There are many sustainable materials on the market for roofing shingles that you should consider for your home.

One type of sustainable roofing shingles is made up of solar reflective granules with a type of polymer modified asphalt, making your roof tough and long-lasting against the effects of harsh weather. This type of material reflects solar rays that may enter your home and heat up your house which raise your electric bill for A/C. By reflecting the solar rays, the color of your roofing shingles also lasts longer, maintaining the beauty of your home for many years.

The asphalt is strong enough to keep your roofing shingles in perfect condition even during storms with high winds and high volumes of rain. This type of product will have warranties on the roofing shingles, ensuring that they will last for usually at least 12 years and in up to 110 mph wind. Investing in high-quality roofing shingles is something that you are sure to benefit from.

Home-3

Strong, Sustainable Exterior Siding

When it comes to the exterior of your home, fiber cement siding is a great alternative compared to more traditional materials like vinyl and wood. This type of siding will ensure the sustainability of your home for longer, often with a warranty of up to 50 years. With great protection against the harsh elements of the weather, fiber cement siding does not warp or fade as quickly as other materials, keeping the design of your home looking its best.

This material comes in a variety of textures so you can customize your home with whatever color and finishing look that your desire.  Fiber cement siding protects your home from water, frost, and cold weather, keeping you warm and dry. Being a product that has the designation of National Green Building Standard, fiber cement siding is a building material to use when thinking about high-quality, green architecture.

Home-1

Eco-Friendly Interior Design Material

For the interior design of your home, consider using bamboo panels. Made from bamboo grass, these panels are sustainable and support green architecture. Bamboo panels can be used in many places of your home. From cabinets to tables, and even accent walls, bamboo is an innovative material that will also give your space a modern feel.

Great for designing, this material comes in a variety of designs and textures including chocolate bamboo, natural bamboo, carbonized bamboo, and bamboo veneer. Bamboo panels are very strong and dense, long lasting and may qualify you for eco-friendly construction credits.

Picture1

Reduce Your Heating Bill with Great Insulation

Insulated concrete blocks are a great material to consider that often outperforms other building materials for the exterior of your home.

This type of material is installed as one continuous system with no breaks in the wall, ensuring complete protection of your house from bugs and elements of the weather. Insulated concrete blocks keep your house warmer in cold weather and can greatly reduce your heating bill, which is also good for the environment.

The core is made up of concrete, making this wall material durable and strong.  These concrete blocks are easier and safer to install than other materials, taking out some of the risk of constructing the exterior of your home. With this type of material, you can also design the exterior and interior walls however you would like as insulated concrete blocks come in a variety of finishes.

Picture3

Materials for Green Architecture

These eco-friendly materials can have a large effect on the sustainability and design of your home. They can increase the lifespan of your home, saving you time and money and the long run. These materials also come in a variety of designs so you can build and design your home how you want, making it the beautiful place to live that you imagined.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


#EcoMonday Contemporary Mediterranean Home With a “Breathing” Eco-Façade

Breathing House 14

Excerpt from “Freshhomes Design & Architecture”: Travessa de Patrocinio is one of those bohemian places in Lisbon that require a sweet disposition while visiting. The unique collaboration between these three designers, Luís Rebelo de AndradeTiago Rebelo de Andrade and Manuel Cachão Tojal, gave birth to a project inspired by minimalism, with an interesting Mediterranean “coverage”. Imagine a thick “coat” of plants shadowing the entire façade of a house that spreads vertically. “Its walls are completely covered with vegetation, creating a vertical garden, filled with around 4500 plants from 25 different Iberian and Mediterranean varieties which occupies 100 square meters. So, short levels of water consumption are guaranteed as well as little gardening challenges.”  Click here to read the rest of the story.

Breathing House 00

Breathing House 0

Excerpt from Architizer News: The House in Travessa do Patrocínio by RA\\ ( Luís Rebelo de Andrade, Tiago Rebelo de Andrade, Manuel Cachão Tojal) does just that. The narrow townhouse is situated smack dab in Lisbon, in a neighborhood with little access to green spaces. To compensate for this lack, the architects draped the house with lush green facades that cover 100 square-meters of wall space. But this isn’t your run-of-the-mill green building accessory. The facades are integral components to the architecture, not just tacked on for a higher LEED score. They’re planted with approximately 4,500 plants sourced from 25 different local varieties, which  all require little maintenance. The result is a vertical garden that the architects say functions as an urban “lung” within the pavement-heavy area, helping to rid the residential street of excess noise, carbon, and other pollutants floating about. Click here to read the rest of the story.
Breathing House 13

Breathing House 16 Breathing House 15 Breathing House 13 Breathing House 12 Breathing House 11 Breathing House 10 Breathing House 09 Breathing House 08 Breathing House 07    Breathing House 03 Breathing House 02 Breathing House 01

A Brief History of Green Walls

The concept of green walls is an ancient one, with examples in architectural history
reaching back to the Babylonians – with the famous Hanging Gardens of Babylon, one
of the seven ancient wonders of the world. Highlights of the history of green walls are
provided below:

  • 3rd C. BCE to 17th C. AD: Throughout the Mediterranean, Romans train grape vines (Vitis species) on garden trellises and on villa walls. Manors and castles with climbing roses are symbols of secret gardens.
  • 1920s: The British and North American garden city movement promote the integration of house and garden through features such as pergolas, trellis structures and self-clinging climbing plants.
  • 1988: Introduction of a stainless steel cable system for green facades.
  • Early 1990s: Cable and wire-rope net systems and modular trellis panel systems enter the North American marketplace.
  • 1993: First major application of a trellis panel system at Universal CityWalk in California.
  • 1994: Indoor living wall with bio-filtration system installed in Canada Life Building in Toronto, Canada.
  • 2002: The MFO Park, a multi-tiered 300’ long and 50’ high park structure opened in Zurich, Switzerland. The project featured over 1,300 climbing plants.
  • 2005: The Japanese federal government sponsored a massive Bio Lung exhibit, the centerpiece of Expo 2005 in Aichi, Japan. The wall is comprised of 30 different modular green wall systems available in Japan.
  • 2007: Seattle implements the Green Factor, which includes green walls.
  • 2007: GRHC launches full day Green Wall Design 101 course; the first on the subject in North America.
  • 2008: GRHC launches Green Wall Award of Excellence and Green Wall Research Fund.

Source: GreenScreen

Biofiltration

An ‘active’ living wall is intended to be integrated into a building’s infrastructure and designed to biofilter indoor air and provide thermal regulation. It is a hydroponic system fed by nutrient rich water which is re-circulated from a manifold, located at the top of the wall, and collected in a gutter at the bottom of the fabric wall system. Plant roots are sandwiched between two layers of synthetic fabric that support microbes and a dense root mass. These root microbes remove airborne volatile organic compounds (VOCs), while foliage absorbs carbon monoxide and dioxide. The plants’ natural processes produce cool fresh air that is drawn through the system by a fan and then distributed throughout the building. A variation of this concept could be applied to green facade systems as well, and there is potential to apply a hybrid of systems at a large scale.

Source: GreenScreen

Public Benefits of Green Walls

Breathing House 101b

Source: GreenScreen

Private Benefits of Green Walls

Breathing House 101a

Source: GreenScreen

Also Check Out:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


The 2030 Challenge for Planning @Arch2030

The built environment is the major source of global demand for energy and materials that produce by-product greenhouse gases (GHG). Planning decisions not only affect building energy consumptions and GHG emissions, but transportation energy consumption and water use as well, both of which have large environmental implications.

In 2008, Architecture 2030 issued The 2030 Challenge for Planning asking the global architecture and planning community to adopt the following targets:

  • All new and renovated developments / neighborhoods / towns / cities / regions immediately adopt and implement a 60% reduction standard below the regional average for fossil-fuel operating energy consumption for new and renovated buildings and infrastructure and a 50% fossil-fuel reduction standard for the embodied energy consumption of materials.
  • The fossil-fuel reduction standard for all new buildings, major renovations, and embodied energy consumption of materials shall be increased to:
    • 70% in 2015
    • 80% in 2020
    • 90% in 2025
    • Carbon-neutral in 2030 (using no fossil fuel GHG emitting energy to operate or construct).
      These targets may be accomplished by implementing innovative sustainable design strategies, generating on-site renewable power and/or purchasing renewable energy (20% maximum).
  • All new and renovated developments / neighborhoods / towns / cities / regions immediately adopt and implement a 50% reduction standard below the regional average for:
    • Vehicle Miles Traveled (VMT) for auto and freight and
    • water consumption.
Seattle 2030 District
White House Challenge’s Partners
Activating the District

Click here for more information on Architecture 2030.

What is The 2030 Challenge? @Arch2030

Architecture 2030, a non-profit, non-partisan and independent organization, was established in response to the climate change crisis by architect Edward Mazria in 2002. 2030’s mission is to rapidly transform the U.S. and global Building Sector from the major contributor of greenhouse gas emissions to a central part of the solution to the climate change, energy consumption, and economic crises. Our goal is straightforward: to achieve a dramatic reduction in the climate-change-causing greenhouse gas (GHG) emissions of the Building Sector by changing the way buildings and developments are planned, designed and constructed.

Buildings are the major source of global demand for energy and materials that produce by-product greenhouse gases (GHG). Slowing the growth rate of GHG emissions and then reversing it is the key to addressing climate change and keeping global average temperature below 2°C above pre-industrial levels.

To accomplish this, Architecture 2030 issued The 2030 Challenge asking the global architecture and building community to adopt the following targets:

    • All new buildings, developments and major renovations shall be designed to meet a fossil fuel, GHG-emitting, energy consumption performance standard of 60% below the regional (or country) average for that building type.
    • At a minimum, an equal amount of existing building area shall be renovated annually to meet a fossil fuel, GHG-emitting, energy consumption performance standard of 60% of the regional (or country) average for that building type.
    • The fossil fuel reduction standard for all new buildings and major renovations shall be increased to:
      • 70% in 2015
      • 80% in 2020
      • 90% in 2025
      • Carbon-neutral in 2030 (using no fossil fuel GHG emitting energy to operate).

These targets may be accomplished by implementing innovative sustainable design strategies, generating on-site renewable power and/or purchasing (20% maximum) renewable energy.

Click here for more information on Architecture 2030.


Notre Dame du Haut by Le Corbusier

The chapel of Notre Dame du Haut, designed by (Charles-Édouard Jeanneret) “Le Corbusier” is located in Ronchamp. The Chapelle Notre-Dame-du-Haut, a shrine for the Catholic Church at Ronchamp was built for a reformist Church looking to continue its relevancy. Warning against decadence, reformers within the Church looked to renew its spirit by embracing modern art and Architecture as representative concepts. Father Couturier, who would also sponsor Le Corbusier for the La Tourette commission, steered the unorthodox project to completion in 1954.