Some Ideas to Help Aruba Become the Greenest and Happiest Island #Sustainability #Planning #Architect #Island #Eco #Green #ilmaBlog

Having recently visited Aruba earlier this year, and have fallen in love with the island, I would like to take this moment to reflect on ways that the little island nation can achieve its sustainability goals over the next several years.  Over the past few years it has come a long way but there are still many things left to be addressed if it is to be the greenest happiest little island in the Caribbean as it has set out to do.

One Happy Island

Some background information before we begin — Aruba contains 70 square miles (178.91 square kilometers) of happiness and a population of 116,600 (as of July 2018).

The tiny island gem is nestled in the warm southern Caribbean with nearly 100 different nationalities happily living together. We welcome all visitors with sunny smiles and a warm embrace.

Aruba is an island and a constituent country of the Kingdom of the Netherlands in the southern Caribbean Sea, located about 990 miles (1,600 kilometers) west of the main part of the Lesser Antilles and 18 miles (29 kilometers) north of the coast of Venezuela. It measures 20 miles (32 kilometers) long from its northwestern to its southeastern end and 6 miles (10 kilometers) across at its widest point.

Together with Bonaire and Curaçao, Aruba forms a group referred to as the ABC islands. Collectively, Aruba and the other Dutch islands in the Caribbean are often called the Dutch Caribbean. Aruba is one of the four countries that form the Kingdom of the Netherlands, along with the Netherlands, Curaçao, and Saint Maarten; the citizens of these countries are all Dutch nationals. Aruba has no administrative subdivisions, but, for census purposes, is divided into eight regions. Its capital is Oranjestad. Unlike much of the Caribbean region, Aruba has a dry climate and an arid, cactus-strewn landscape. This climate has helped tourism as visitors to the island can reliably expect warm, sunny weather. Fortunately, it lies outside Hurricane Alley.

Aruba’s economy is based largely on tourism with nearly 1.5 million visitors per year, which has contributed to Aruba’s high population density.

Despite having one of the world’s smallest populations, Aruba does have a high population density at 1,490 per square mile (575 people per square kilometer), which is more than New York state.

During the Rio +20 United Nations Conference on Sustainable Development in 2012, the island announced it aim to cover its electricity demand by 100% renewable sources by 2020. In the same year, Aruba together with other Caribbean islands became member of the Carbon War Room’s Ten Island Challenge, an initiative launched at the Rio +20 Conference aiming for islands to shift towards 100% renewable energy. The benefits of becoming 100% renewable for Aruba include: reducing its heavy dependency on fossil fuel, thus making it less vulnerable to global oil price fluctuations, drastically reducing CO2 emissions, and preserving its natural environment.

(Sources: https://www.100-percent.org/aruba/; https://en.wikipedia.org/wiki/Aruba; http://worldpopulationreview.com/countries/aruba-population)

Some of the areas where Aruba seems to be excelling includes their recent ramp up of wind power – capitalizing on the constant wind that keep the tiny island habitable.

Other areas that they can improve on include the following:

Electric Vehicles

A whopping 87 percent of the entire power generation in the Caribbean comes from imported fossil fuels, and because so much of the region’s fuel comes from faraway sources, electricity costs are four times higher than they are in the United States. The economies of these islands are basically at the whim of global oil prices

The Caribbean has some other reasons to be enthusiastic about electric cars powered by a solar electric grid. The islands, on the whole, are small and low in elevation. The vast majority of islands in the Caribbean are smaller than 250 square miles and are fairly flat, with isolated peaks at most. 

This combination makes them ideal for electric vehicles in ways that, just for example, the U.S. is not. Most electric vehicles have limited ranges, with some only offering a hundred miles or less per charge. The higher-end vehicles can go further; the Nissan Leaf boasts 151 miles per charge, the Chevy Bolt 238 miles, and the Tesla Model S 315, but with still-long waiting times for a full charge, that’s about all you’re getting in an individual trip. That’s not great for hour-plus-long commutes from American suburbs, but for smaller islands with fewer hills to climb, that sort of range is just fine.

Customers who drive electric experience common benefits.

  • Charging up with electricity will cost you less than filling your tank with gas. Clients are experiencing savings of up to 50 percent on fuel costs and very low cost of maintenance.
  • Produce no-to-low tailpipe emissions. Even when upstream power plant emissions are considered, electric vehicles are 70 percent cleaner than gas-powered vehicles.
  • “Fuel” up with clean, Aruban-produced electricity and help our island achieve more energy diversity.
  • Drivers enjoy electric vehicles’ silent motor, powerful torque and smooth acceleration.

Although “solar” vehicles would be even better for this region, the ability for the island to “leap frog” ahead of other counties by building in an electric fueling infrastructure would help set it apart from other island nations.

(Sources: http://nymag.com/developing/2018/10/more-like-electric-car-ibbean.html; https://www.elmar.aw/about-elmar/sustainable-energy-and-electric-cars)

Solar Power

Although solar has come down over the past decade I was surprised that not more individuals capitalize on the sunny region with solar roof panels.

The recently constructed government building, Cocolishi, is one of the first buildings on Aruba with a solar roof. The solar panels provide 30 kW of renewable energy.

On the rooftops of the Multifunctional Accommodation Offices (MFA) in Noord and Paradera solar panels are installed. The MFA in Noord is an energy neutral building, this means it produces the same amount of energy as it consumes. The surplus during sunny days will be added to the grid.

Previously, solar panels were installed on the Kudawecha elementary school. These panels produce 175.5 kW solar energy.

The largest school solar rooftop project is installed on the Abramham de Veer School elementary school. This rooftop project produces 976 kW renewable energy.

The Caribbean’s first solar park opened in 2015 over the parking lot of the airport in Aruba. This solar park provide 3.5 MW solar energy and is one of the first renewable energy projects making use of the Free Zone of Aruba.

In Juana Morto, a residential area complex, solar panels are installed on the rooftops of different houses. Together the solar panels generate 13 kW of green energy.

Elmar, the electricity provider of Aruba, installed solar panels on the roofs of their offices. These buildings together provide 9.8 kW solar energy.

There are different decentralized solar projects on Aruba. Together they consist of 5 MW solar PV part and 3 MW rooftop schools & public buildings PV systems. Once built per the 2017 plan, the installation will provide an additional 13.5 MW providing power for approximately 3,000 households.

Given the amount of sunshine this island receives, expanding their solar portfolio seems prudent.

(Source: https://www.freezonearuba.com/business-opportunities/solar-projects-aruba/)

Wind Power

Wind Park ‘Vader Piet’ is located on Aruba’s east coast in the Dutch Caribbean, this wind farm consists of 10 turbines with an actual capacity of 30 megawatts (MW). Aruba’s current wind power production represents about 15-20 percent of its total consumption, which places it fourth globally and still some way behind Denmark, the current global leader, which produces 26 percent of its power from wind. But today, with a second wind farm about to be deployed, Aruba is set to double its wind energy output, placing it firmly in first place.

It’s hard to believe that just a few windmills are able to produce an output of 30 megawatts of energy, suppling 126,000 MWh of electricity to the national grid each year, displacing fossil fuel-generated energy and supporting the island’s transition towards renewable energy sources.

Given that the wind is a constant, exploiting this resource seems like a profitable and intelligent thing to do.

(Source: https://www.utilitiesarubanv.com/main/embracing-the-winds-of-change/)

Off-Roading

I love that the island has embraced off-road vehicles (ORV); it is a great way to experience the beauty around us in a challenging and fun way adding to the experience.  However, it would be very wise to develop designated areas for off-road vehicles to eliminate (or at least minimize) the human impact on the beauty of this island.  Because it’s greatest commodity is the natural beauty – Sun, ocean, nature and wildlife; Aruba (and other island nations) need to consider how to balance the fun aspect with some regulations that will preserve the beauty of the natural world for future generations.

As you may already know, the use ORV’s on coastal beaches is an activity that attracts considerable controversy amongst beach users.

ORV driving is considered as main contributor to land degradation in arid regions.

The most obvious physical impacts of ORV on vegetation include plant crushing, shearing, and uprooting. Such destruction of vegetation in arid ecosystems can lead to land degradation and desertification. Desert plant species exhibit varying degrees of vulnerability to vehicle use intensity, which results in changes in vegetation composition, height, biomass, reproductive structures, cover and seedbank.

(Sources: https://serc.carleton.edu/vignettes/collection/35397.html; https://www.sciencedirect.com/science/article/pii/S1319562X18301153)

I also notice that many locals and tourists park their vehicles on the shorelines which are inhabited by indigenous plants and animals of all varieties.  This too should be lightly regulated through education or ordinances so that leaky old (or new) vehicles do not stain the natural shorelines that not only belong to us but to our grandchildren’s grandchildren as well.  We need to educate people to be more responsible and not disrupt the natural world with our cars , especially when it can be easily avoided with very little cost impact to the planning of the island.

Stormwater

Following up on vehicle management along the shorelines, another thing I noticed was stormwater runoff; which is not much but should be managed now to avoid a small accumulation over time.  It is still early enough to employ best practices and manage any future problems by building a robust infrastructure now before things get worse.  Because the island is so small it looks like much of the run off drains directly into the ocean.  Following best practices will ensure that the clear waters stay that way long into the future for the benefit and enjoyment of future generations.

Circumstances alone should prompt islanders to manage stormwater runoff:

  • Traditional community boundaries often centered on natural drainages (e.g., Hawaiian ahupua’a and Samoan village structure), so residents are aware of how land use changes can affect watershed hydrology.
  • Local economies rely on clear waters, healthy reefs, and robust fisheries; thus, BMPs designed to eliminate sediment plumes offer immediate, visible results to resource users.
  • In some locations, rainfall is the primary source of freshwater, so using BMPs like cisterns or storage chambers to collect runoff for potable and non-potable reuse makes water supply sense.
  • Tropical vegetation is fast-growing and plays a huge part in the water cycle, so stormwater management approaches that take advantage of canopy interception and evapotranspiration to reduce runoff have a high chance of success.
  • Island infrastructure is subject to big storms, rising seas, and tsunamis; therefore redundancy within the stormwater system improves resiliency.

Things that should be considered as the island faces increased development includes the engagement of “low impact development” which is an approach to land development that meets the following conditions:

  1. Avoids disturbance of existing vegetation, valuable soils, and wetlands to the maximum extent possible (e.g., minimizing site disturbance and maintaining vegetated buffers along waterways);
  2. Reduces the amount of impervious cover and, thus, stormwater runoff generated on a site through careful site planning and design techniques; and
  3. Manages runoff that is generated through structural and non-structural practices that filter, recharge, reuse, or otherwise reduce runoff from the site.

(Source: https://horsleywitten.com/pdf/Feb2014_IslandBMPGuide_wAppendix.pdf)

Desalinization

Tasked with providing water for a population which more than quadruples with tourists throughout the year, the Caribbean island of Aruba is building a new 24,000 m3/day (6,340,130 gallons) desalination facility to process seawater from beach wells. Paul Choules & Ron Sebek discuss technical details of the installation, set to replace older thermal desalination units.

This is so awesome and could become a really great way for Aruba to expand its market into other emerging countries that are facing water issues.  Abruba could use its extensive knowledge to help other arid climates deal with lack of drinking water, taking Aruba to the next level as a global leader in this realm.

(Source: https://www.waterworld.com/international/desalination/article/16201943/desalination-plant-profile-aruba-the-pearl-of-the-caribbean)

Cogeneration of Power

Justin Locke is director of the island energy program at the Carbon War Room, an international nonprofit. He said it makes sense for islands to switch to clean power.

“Islands currently pay some of the highest electricity prices in the world. At the same time, they also have some of the best renewable energy resources,” added Locke. Aruba’s plan includes building new solar and wind farms, converting waste to energy, and working to increase energy efficiency.

Aruba has set the ambitious goal of becoming the first green economy by transitioning to 100% renewable energy use. Currently, Aruba is at 20% renewable energy use.

Aruba is known for being sunny all year long and its cooling trade winds. By capitalizing on these natural resources, the island can generate renewable energy. The island is lowering its dependence on heavy fuel oil, lowering CO2 emissions, and reducing environmental pollution.

By steadily continuing its momentum with its green movement and implementing cogeneration of power production it will help the island become sustainable and resilient.

(Source: https://www.netherlandsandyou.nl/your-country-and-the-netherlands/united-states/about-us/aruba-and-you/sustainability-in-aruba)

Conclusion

Although Aruba has promised to become green it is not absolutely clear that it will be able to achieve its aggressive 2020 goals.  However, the future is bright if Aruba is able to continue on its path and starts to take these issues into greater consideration making it a premier destination for people to enjoy.  Becoming the world’s greenest island will ensure that tourism continues to flourish and that the country will continue to thrive in an environmentally-friendly way that will help restore and maintain the attributes that has made it what it has become famous for – a place for people from all over the world to come and enjoy the natural world away from the hustle and bustle of city life and experience the world in a way that seems to be reminiscent of a simpler time and offers us a chance to connect with something much larger than ourselves.  As temporary stewards for the environment it is up to us to protect that which does not belong to us so that future generations can also appreciate these valuable experiences.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Eco Friendly Building Material, Newspaperwood

You might already recycle your newspaper, but instead of it being ground into paper for a second go around, it could be made into “wood.” Now, that might sound backward – paper turning back into wood and not the other way around. But really, it brings the paper and wood process full circle and makes complete sense. The Dutch designers/founders of NewspaperWood found that compressing newspaper and glue into many thin layers creates a wood grain texture that works for various home applications. They work by request only, but you’ll want to check them out.

(Source: https://elemental.green/11-eco-friendly-house-building-materials-based-waste)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Personal Reflection on the Tragedy of April 15, 2019 at Notre Dame Cathedral in Paris, France #Paris #Fire #NotreDame #Reflection #Architecture #CarpeDiem

Reflection on the Tragedy of April 15, 2019

This week is Holy Week, when millions of Western Christians mark the death and resurrection of Jesus. Under normal circumstances, Notre Dame cathedral in Paris would have been preparing to display its holy relics to the faithful on Good Friday.

But as fire engulfed the sacred site on April 15, 2019, Catholics across the world reacted in horror and disbelief, particularly when the cathedral’s iconic spire toppled amid the flames.

For generations, Notre Dame Cathedral has been a place of pilgrimage and prayer, and, even as religion in France has declined for decades, it remained the beating heart of French Catholicism, open every day for Mass.

Source: CNN

REFLECTION

When something that is tragic like the Notre Dame Cathedral fire occurs, it is important to take time to reflect on what happened.  First, I look at this tragedy as a Christian, then as the grandson of European immigrants, and finally as an Architect.  I reflect on these recent events using three distinct but entwined lenses:

  • As a Christian, I reflect on what it means to be Christian.  Although imperfect, we are all put on Earth to accomplish great things.  Some have more than others, but we all have our crosses to bear.  As Easter approaches, for many Christians around the world who celebrate this holiest of days it is a time of reflection and hope of things to come.  As Jesus said, you are not of this world (we belong to Him).  When these events happen it also makes us aware of our fleeting earthly lives.
  • As a grandson of Europeans, I feel a strong camaraderie with my neighbors in France.  As technology helps the world shrink we are becoming global citizens.  But as someone who has spent many summers and taken many trips to Europe (probably more than 30 trips over my four decades), I feel a strong connection to what happens in Europe.  I have the same feeling in my stomach that I had when 9-11 happened in New York City.  We take for granted that these beautiful structures will always be here with us.  These events remind us that we must cross off trips that are on our bucket lists sooner rather than later.
  • As an Architect, my primary objective is to safeguard the public.  Sure, I love great design and inspiring spaces as much as the next designer.  However, being an Architect means that we must put safety above all else.  When these events occur, I cannot help but think how vulnerable we are.  As Architects we are always trying to evoke safety and security into our projects – Many times decisions are made with money more than risk aversion.  A 100% safeguard world is not possible, but I challenge my fellow Architects to consider ways that we can educate and confront our clients to ensure that all our buildings are safe.  We are all human with earthly perspectives and we are all bound to mistakes as we manage economics with safety.  Take for example, the Seton Hall student housing fires that changed safety for campus of higher educations around the country.  Can this tragedy bring some good? Perhaps as leaders in our industry we can shape the safety and preservation of our landmarks and new building projects to ensure the safety of the occupants.

Churches, castles and forts are the primary reason I chose this profession. Whenever we lose a structure of significance it is like losing a loved one. Like life itself, our art and architecture must be cherished because it is all temporary after all. Carpe Diem.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


THE SPIRIT OF CAMPUS DESIGN: A reflection on the words of Werner Sensbach #Campus #Planning #Design #University #Architect

Montclair State University
Photo Credit: Mike Peters

In 1991, Werner Sensbach, who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia, wrote a paper titled “Restoring the Values of Campus Architecture”. The paragraphs that follow were excerpted from that article. They seem particularly appropriate to Montclair State University as it looks at its present campus facilities and forward to the planning of future facilities on a piece of land of spectacular beauty.

Nearly two thousand years ago, the Roman architect Vitruvius wrote that architecture should provide firmness, commodity, and delight. It is the definition of “delight” that still troubles us today. This is especially so on college campuses. Many who try to give voice to what it is that brings delight in a building or an arrangement of buildings may mention the design, the placement on the site, the choice of building materials, the ornamentation, or the landscaping. But mostly it’s just a feeling, or a sense that things are arranged just right, or a sensation of pleasure that comes over us. So academics, like nearly everyone else, often are unsure when planning for new campus construction about what is likely to be delightful. Even though the United States has 3,400 colleges, while most other advanced nations only have a few dozen, we simply have not developed in the United States a sensibility, a vocabulary, a body of principles, an aesthetic for campus architecture.

That each campus should be an “academic village” was one of Thomas Jefferson’s finest architectural insights. Higher learning is an intensely personal enterprise, with young scholars working closely with other scholars, and students sharing and arguing about ideas, religious beliefs, unusual facts, and feelings. A human scale is imperative, a scale that enhances collegiality, friendships, collaborations on research.

I believe the style of the campus buildings is important, but style is not as important as the village-like atmosphere of all the buildings and their contained spaces. University leaders must insist that architects they hire design on a warm, human scale. Scale, not style, is the essential element in good campus design. Of course, if an inviting, charming campus enclosure can be combined with excellent, stylish buildings so much the better.

The third imperative for campus planners, the special aesthetic of campus architecture, or the element of delight, is the hardest to define. It is the residue that is left after you have walked through a college campus, a sense that you have been in a special place and some of its enchantment has rubbed off on you. It is what visitors feel as they enjoy the treasures along the Washington Mall, or others feel after leaving Carnegie Hall, Longwood Gardens in southeastern Pennsylvania, Chartres Cathedral, the Piazza San Marco in Venice, or the Grand Canyon.

On a college campus the delight is generated by private garden spaces in which to converse, by chapel bells at noon or on each hour, by gleaming white columns and grand stairways, by hushed library interiors, by shiny gymnasiums and emerald playing fields, by poster-filled dormitory suites, by a harmony of windows and roofs, and by flowering trees and diagonal paths across a huge lawn. The poet Schiller once said that a really good poem is like a soft click of a well-made box when it is being closed. A great campus infuses with that kind of satisfaction.

In my view, American’s colleges and universities—and especially their physical planners—need three things to become better architectural patrons. One is a renewed sense of the special purpose of campus architecture. A second is an unswerving devotion to human scale. The third is a sense of the uncommon and particular aesthetic—the delight—that a college or university campus demands.

A surprisingly large sector of the American public has conceded a special purpose to higher education. College campuses have provided a special place for those engaged in the earnest pursuit of basic or useful knowledge, for young people devoted to self-improvement, and for making the country smarter, wiser, more artful, and more able to deal with competitor nations.

Therefore, college and university campuses have a distinct and separate purpose, as distinct as the town hall and as separate as a dairy farm. For most students the four to seven years spent in academic pursuits on a university campus are not only an important period of maturing from adolescence to adulthood but also years of heightened sensory and creative ability, years when the powers of reasoning, feeling, ethical delineations, and aesthetic appreciation reach a degree of sharpness as never before. During college years, young minds absorb impressions that often last for a lifetime: unforgettable lectures, noisy athletic contests, quiet hours in a laboratory or library, jovial dormitory banter, black-robed commencements, encounters with persons of radically different views, the rustle of leaves, transfigured nights. The American college campus serves superbly as an example of Aristotle’s idea of a good urban community as a place “where people live a common life for a noble end.”

Montclair State University
Photo Credit: Mike Peters

No architect should be permitted to build for academe unless he or she fully appreciates that his or her building is an educational tool of sorts. New buildings should add to the academic ambiance and enrich the intellectual exchanges and solitary inquiries. They should never be a mere personal statement by the architect or a clever display of technical ingenuity or artistic fashion.

Campus facilities planners need to be sure that the architects they choose are able to incorporate surprise, touches of whimsy, elegance, rapture, and wonder into their constructions. This special campus aesthetic is definitely not a frill. It is what graduates remember decades after they have left the college, and what often prompts them to contribute money to perpetuate the delight. It is what captures high school juniors and their parents in their summer pilgrimages to numerous college campuses to select those two or three institutions to which they will apply.

I think the best way to preserve the particular values of the American college campus is through a three-pronged effort:

The first is to recognize that the village-like university campus is a unique American architectural creation. No other nation has adopted the “academic village” as an architectural and landscaping form, though the ancient Oxbridge colleges came close. Academic leaders should become more knowledgeable about the distinctiveness of their campus communities and more proud of and assertive about maintaining the values of this inventive form.

Second, universities should have a broadly representative and expert blue-ribbon committee to watch over all new construction, not leave it to the vice president for administration, a facilities planner, or a trustee committee. The campus environment should be guarded and enhanced as carefully as the quality of the faculty.

Third, each college and university should draw up a set of design guidelines to help it become a patron who can list what is essential in its campus architecture. These guidelines will differ from campus to campus, but nearly all institutions should include concern for the three fundamentals: academic purpose, human scale, and a special campus aesthetic. Architects can de- sign more effectively and sympathetically if they understand the expectations of the college.

Although these words were written in 1991, they remain true today as Montclair State University continues to grow its enrollment, academic programs, research programs…and the facilities that serve them.

Source: “Restoring the Values of Campus Architecture” by Werner Sensbach (who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia)

For a list of my projects: Click Here

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Glossary of Green Terminologies

The following is a quick reference guide to get you started understanding the jargon associated with green design and construction. We hope you find it useful.

1,000 ppm

One thousandth parts per million is the minimum disclosure threshold. Manufacturer measures and discloses all intentionally added ingredients and residuals that exist in the product at 1000 ppm (0.1%) or greater. These may  trigger a GreenScreen Benchmark (BM-1 or LT-1) or Possible Benchmark 1 (BM-P1 or LT-P1).

10,000 ppm (As per MSDS)

Manufacturer discloses all intentionally added ingredients and residuals that exist in a product. This is the threshold that is required by current MSDS standards

100 ppm

One hundred parts per million is the ideal disclosure threshold. Manufacturer measures and discloses all intentionally added ingredients and residuals that exist in the product at 100 ppm (0.01%) or greater. These may trigger a GreenScreen Benchmark (BM-1 or LT-1) or Possible Benchmark 1 (BM-P1 or LT-P1).

Accessory Materials

Used for the installation, maintenance , cleaning and operations materials; including materials recommended by warranty. For example, if a carpet requires a specific type of adhesive. The adhesive would be the accessory materials.

Assessment

the evaluation of the toxicological properties (hazards) of chemicals; evaluates exposure and risk assessment in relation to both environmental and human health scenarios.

Associated Hazard

disclosure of the health hazards associated with each ingredient; Portico uses a minimum set of authoritative chemical hazard lists against which ingredients are screened for human health and environmental hazards.

Asthmagen

Asthmagens are substances that are known to cause or exacerbate asthma. Asthma is a complex disease, and there is not enough evidence to point to any single cause. Public health agencies often report dust, pet dander, environmental air pollution, tobacco smoke, respiratory infections, mold, exercise, and stress as common triggers of asthma attacks.

Health organizations have also identified a number chemical asthmagens, including many that are commonly used in building materials, such as floorings, insulations and cabinet substrates. These chemicals include: formaldehyde, toluene, styrene, BPA and certain phthalate plasticizers.

Despite better management of asthma through medication, improved outdoor air quality and a dramatic decline in tobacco smoking, the incidence of asthma has continued to rise, especially in children — and in particular among children who are living in poverty.

Authoritative chemical hazard lists

a list of chemicals and their association to human health or environmental hazards. These lists are created by an expert assessment of scientific evidence by a recognized authoritative body.

Biobased

“Biobased” is a term used in the marketing materials of many types of products. While biobased technically describes a product made from a living material (soybean oil, wool, etc.) marketing materials may stretch this definition to include minerals or other naturally occurring materials that aren’t renewable, or suggest that an entire product is made of biobased materials, when in fact only a small percentage of the product is.

Blowing Agent

A class of chemicals that can generate foam in materials, such as those used in insulation, which later harden or solidify into long-lasting structures. Many are known to possess extremely high global warming potential; chlorofluorocarbons (CFCs) have been mostly eliminated from new production since the 2000s, but hydrofluorocarbons (HFCs) are still prevalent. Blowing agents, as a class of products used in building product manufacture, are in an active transition toward healthier and more environmentally friendly options.

CAS Number

chemical abstract service number is a unique numerical identifier for every chemical described in open scientific literature of elements, chemical compounds, polymers and other substances.

Carcinogen/Cancer

Can cause or contribute to the development of cancer.

Characterization

identification and disclosure of ingredients and all hazards associated with ingredient components in the product/material formulation.

Common Product Profile

A profile of a generic, non-manufacturer-specific product type that contains: a brief description of the product type, the expected composition of the product based on publicly available sources, and corresponding health hazards inherent to this composition. Common Product Profiles (CPs) developed as part of the Quartz Project include additional information about the life cycle of the product, such as its contribution to global warming. See http://www.quartzproject.org/ for more information on CPs.

Developmental Toxicant

Can cause harm to a developing child, including birth defects, low birth weight, and biological or behavioral problems that appear as the child grows.

Disclosure Threshold

the level at which all intentionally added ingredients and residuals in the product/material formulation are disclosed (1,000 ppm, 100 ppm, or other). Different standards require specific disclosure threshold. MSDS (Materials Safety Data Sheets require minimum of 10,000ppm.

Endocrine/Hormone Disruptor

Can interfere with hormone communication between cells which controls metabolism, development, growth, reproduction, and behavior (the endocrine system). Linked to health effects such as obesity, diabetes, male reproductive disorders, and altered brain development.

Environmental Attributes

this information can be found in an EPD, LCA, or other studies of global warming impact, carbon content, and embodied energy. We recommend providing this information (when available) because it will be helpful for LEED and LBC regional credit documentation and carbon accounting.

Flame Retardants

Flame retardants are chemical additives to building products that reduce their flammability. They are commonly found in textiles, plastics, coatings, finishes and foams. Halogenated flame retardants – those made with chlorine or bromine – are particularly toxic to human health, and the planet.

Flue-Gas Desulfurization (FGD)

Flue-gas desulfurization is an environmental control technology installed in the smokestacks of coal-fired power plants designed to remove pollutants from the air. These controls are also called “scrubbers”. Once the scrubbers are full of sulfur dioxide, they are often used to create synthetic gypsum. FGD gypsum can be used in drywall, but also in concrete and other applications where mined gypsum can be used. FGD can contain heavy metals such as mercury that can be released into the air when it is incorporated into these products.

Formaldehyde

Formaldehyde is a colorless gas used as a preservative and disinfectant in the building industry, and in the manufacture of polymers. Formaldehyde is carcinogenic, irritates the eyes, nose, and lungs, and is known to react with other atmospheric chemicals to produce the deadly gas carbon monoxide. Formaldehyde is used in some paints and adhesives, in some fabric treatments, and, significantly, in the manufacture of polymeric binding resins used in a wide variety of building products. Phenol formaldehyde, urea formaldehyde, and melamine formaldehyde are all known to release formaldehyde over time long after product installation in residential and commercial spaces.

Global Warming

Can absorb thermal radiation, increasing the temperature of the atmosphere and contributing to climate change.

Global Warming Potential (GWP)

Known as “greenhouse gasses,” certain gasses have the ability to warm the earth by absorbing heat from the sun and trapping it the atmosphere. Global Warming Potential is a tool that allows scientists to compare the severity of greenhouse gasses based on how much heat they can trap, and how long they remain in the atmosphere. By using carbon dioxide for each comparison, a larger GWP number, the more a gas warms the earth, and contributes to climate change.

Look for GWP data on Environmental Product Declarations, and learn more about interpreting these numbers at http://www.epa.gov/ghgemissions/understanding-global-warming-potentials.

GreenScreen

short for “GreenScreen for Safer Chemicals”, a chemical disclosure and assessment standard  developed by Clean Production Action to rank chemicals along a four point scale between the most toxic chemicals and the most benign to guide substitution efforts.

HPD

also known as Health Product Declaration. It is a standardized format that allows manufacturers to share contents of their products, including any hazardous chemicals.

HPD-1

status marked for products that have a Health Product Declaration with full ingredient and hazard listings and a hazard translator with a disclosure threshold of 1000 or 100 ppm; can contain LT-1 scored components

HPD-2

status marked for products that have a Health Product Declaration with full ingredient and hazard listings and a hazard translator with a disclosure threshold of 1000 or 100 ppm; can NOT contain LT-1 scored components

HPD-Partial

status marked for products that have a Partial Health Product Declaration and have characterization of hazards and hazard translator for ingredients; exceptions are acceptable with a disclosure threshold of 1000 ppm

Hazard

Hazard is an intrinsic property of a substance – its potential to harm humans or some part of the environment based on its physical structure and properties. We can assess the hazard of a chemical or material by reviewing the scientific evidence for the specific kinds of harm that a substance can cause (often called the endpoints), such as damage to the human reproductive system, or the onset of asthma. On HomeFree, hazards are displayed with a color indicating the level of concern for each one. Purple is the highest level of concern, followed by red, and then orange.

Because very few products on the market are made with ingredients that have no hazards, you should expect to see hazards called out, even for products that are considered healthier options. The trick is to compare hazards between products, and whenever possible, prefer the product with fewer hazards.

Health Endpoint

A disease symptom or related marker of a health impact on a human or other organism. Examples of human health endpoints include carcinogenicity (causes cancer), reproductive and developmental toxicity, respiratory sensitization, etc. Health endpoints are due to the inherent hazards of a substance, and are determined by authoritative bodies, such as the US EPA or the National Institutes of Health.

Information Request Sent

this means that an email letter has been sent to the manufacturer requesting information about a specific product. This IR may ask the manufacturer to share HPD type data, a GreenScreen Assessment, or a C2C certification in order to meet Google’s Healthy Materials criteria

Intentional Content

each discrete chemical, polymer, metal, bio-based material, or other substance added to the product by the manufacturer or supplier that exists in the product as delivered for final use requires its own line entry and must account for over 99% of the total product. To add content you may enter it by using a CAS registry number, chemical name, abbreviations, common/ trade names, genus/species (for biobased materials), product or manufacturer name (for components)

Inventory

list of product contents, ingredients

Lifecycle

In biology, the term “lifecycle” describes the arc an organism undergoes from birth, through stages of growth and development, to its death. When applied to building products, “lifecycle”describes the arc that chemicals or materials take from the extraction of the raw materials needed for their creation, through their synthesis and inclusion in a building product, the period of time that the product is installed in a building, its eventual removal from the building, and its disposal/reuse/recycling at the end of its useful life. Products (and the chemicals and materials used to make them) often present human and environmental health hazards at any step in this lifecycle.

Material Health

listing the ingredients and present chemical hazards of a product and optimizing towards safer materials

Mutagen

Can cause or increase the rate of mutations, which are changes in the genetic material in cells. This can result in cancer and birth defects.

Optimization

the absence of any “chemicals of concern” in the product/material formulation.

Ozone Depletion

Can contribute to chemical reactions that destroy ozone in the earth’s upper atmosphere.

PBTs

Persistent, Bio-accumulative Toxicants; these are chemicals that are toxic, persist in the environment, bioaccumulate in the food chains, and consequently pose risks to the human health and environment

Persistent Bioaccumulative Toxicant (PBT)

Does not break down readily from natural processes, accumulates in organisms, concentrating as it moves up the food chain, and is harmful in small quantities.

Portico

formerly known as the Healthy Materials Tool; is a new portal for entering and accessing building  product data. Portico is a database that allows project teams unparalleled access to a vast selection of building products. Portico automatically screens manufacturer product information so that products are available in front of Google’s design teams right away.

Predicted from Process Chemistry

Fully disclosed projected residuals based on process chemistry. This option is suggested for manufacturers without the capability of measuring actual residuals. Indicate the tool or other basis for prediction in the Disclosure Notes. The HBN Pharos tool is an example of a tool that predicts potential residuals.

Publish

share HPD information solely to Google, not to general public. If public, please share public URL in the transparency section

Reproductive Toxicant

Can disrupt the male or female reproductive systems, changing sexual development, behavior or functions, decreasing fertility, or resulting in loss of a fetus during pregnancy.

Residual Content

the by-product of a reaction of two or more chemicals that are used in the manufacturing process; known as trace substances remaining in the product from manufacturing steps (such as monomers and catalysts) or contaminants that come with raw materials. Residuals can be known from testing as well as estimated from process chemistry assessment. Predicted from Process Chemistry definition noted above.

Respiratory Sensitization/Asthmagen

Can result in high sensitivity such that small quantities trigger asthma, rhinitis, or other allergic reactions in the respiratory system. This can can exacerbate current asthma as well as cause the disease of asthma.

Screening

review contents against authoritative chemical hazard lists. Health Product Declaration standard uses screening as a pathway to understand and assess products for any human health hazard endpoints.

Self-declared

a product disclosure and screening/assessment which is created “in-house” by the manufacturer of the product, and does not utilize a third party assessor.

Third Party Assessor

an independent assessment body which is not affiliated with the manufacturer or the product.

Tint

Tints are a mix of pigments and other ingredients that give paints their distinct color. These tints can be a substantial source of VOC content in addition to whatever VOCs are in the paint itself. Darker and richer colors will tend to be higher in VOC content. Some manufacturers have developed low or zero VOC tint lines that can be used to insure that a low VOC paint product remains so even in dark or rich colors.

Transparency

the level of product/material formulation information (including ingredients names and associated hazards) being shared by the manufacturer with the end users (i.e. public, third party, Google).  Portico’s transparency category gives points to manufacturers who share product information (HPD) publicly rather than just to Google.

VOC

Volatile Organic Compound

VOC Content

provide the regulatory VOC content  for liquid/wet applied product in g/L; if the VOC content has not been third party certified and there is no standard for the product, indicate “none” on the VOC content line. If the product is not wet applied, indicate N/A

VOC Emission

emissions testing and certification for any product for which the current version of the CDPH (CA Department of Public Health) Standard Method provides emission scenarios

VOCs

Volatile organic compounds (VOC) means any compound of carbon (excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate), which react in the atmosphere in the presence of sunlight.

Verification

assessments verified by an independent, third party assessor, in compliance with specific requirements pertaining to the standard at hand.

Zero VOC

5 g/L cutoff threshold recognized by SCAQMD for products that are Zero VOC

ppm

parts per million (1,000 ppm = 0.1%; 100 ppm = 0.01%).

(Source: https://homefree.healthybuilding.net/glossary)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Top 20: Technology & Innovation Ideas For Architects

Thank you for all the support and encouragement over the years.  Here are some of our favorite blog posts about technology and innovation related to the field of Architecture:

  1. High Performance Building Design
  2. 3-D Printing
  3. Connected Spaces
  4. Benefits of Using Digital Twins for Construction
  5. Digital Twins
  6. Drone Technology
  7. Artificial Intelligence
  8. Immersive Experience in Architecture
  9. Smart Cities
  10. Big Data in Architecture
  11. Creating High Performance Buildings through Integrative Design Process
  12. Forget Blueprints, Now You Can Print the Building
  13. The 7 Dimensions of Building Information Modeling
  14. Parametric Architecture and Generative Design System
  15. Architecture Robots
  16. Internet of Spaces
  17. Sustainable Design Elements to Consider While Designing a Project
  18. What is a High Performance School?
  19. What is BIM? Should Your Firm Upgrade? by @FrankCunhaIII
  20. Renewable Wave Power Energy

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


WELL Communities: Health & Wellness Lifestyle

Architects need to continue to consider healthy living when designing private and public spaces.  According to the sources cited below, the Well Living Lab aims to answer critical questions to make homes, offices and independent living environments healthier places. That means indoor environments could be altered to reduce stress and increase comfort, performance and sleep.

By understanding the interplay of elements such as sound, lighting, temperature and air quality, indoor spaces may be altered to address people’s specific and overall health needs. And by understanding how people’s behavior is shaped by their physical environment, facilities can be designed to maximize positive health habits and reduce negative influences. This ambitious three-year research plan is the start toward transforming human health and well-being in indoor environments.

(Source: http://welllivinglab.com)

Well-1

What is a WELL Community?

WELL community functions to protect health and well-being across all aspects of community life. The vision for a WELL community is inclusive, integrated, and resilient, fostering high levels of social engagement.

Air

Facilitates ambient air quality with strategies to reduce traffic pollution and reduce exposure to pollution.

Water

Encourages drinking water quality, public sanitation, and facilities provisions with strategies managing contaminated water on a systems scale and strategies to promote drinking water access.

Nourishment

Facilitates fruit and vegetable access, availability and affordability with policies to reduce the availability of processed foods and providing nutritional information and nutrition education. Also includes strategies for food advertising and promotion, food security, food safety and breastfeeding support.

Light

Supports maintained illuminance levels for roads and walkways and strategies for limiting light pollution, light trespass, glare and discomfort avoidance.

Fitness

Integrates environmental design and operational strategies to reduce the risk of transportation-related injuries, mixed land use and connectivity, walkability, cyclist infrastructure, infrastructure to encourage active transportation and strategies to promote daily physical activity and exercise.

Temperature

Facilitates strategies to reduce heat island effect with policies to deal with extreme temperatures and manage sun exposure and ultraviolet risk.

Sound

Facilitates noise exposure assessment with planning for acoustics, techniques to reduce sound propagation and hearing health education.

Materials

Supports strategies to reduce exposure to hazardous chemical substances in cases of uncontrolled/accidental release and contaminated sites and to limit use of hazardous chemicals in landscaping and outdoor structures.

Mind

Provides access to mental health care, substance abuse and addiction services and access to green spaces.

Community

Supports health impact assessments, policies that address the social determinants of health, health promotion programming, policies that foster social cohesion, community identity and empowerment, crime prevention through environmental design, policies and planning for community disaster and emergency preparedness.

(Source: https://www.wellcertified.com)

Further Reading: You Know LEED, But Do You Know WELL?

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook