Ask the Architect: What Are Some Questions College Administrators Should Ask Themselves Before They Start Planning for the Future? #Architect #UniversityArchitect #Ideas #Design #Planning

Sometimes Architects Design and Sometimes They Ask Questions – Here are 50 Questions for College Administrators to Consider as They Prepare to Plan For Their Future:

  1. As an institution what are we good at? What are we not so good at?
  2. Where do we want to go – What is our vision for where we are headed – academically and as a family of diverse individuals?
  3. How will people of all ages (continue to) learn in the future?
  4. How will students live, communicate, develop, work, play, share?
  5. What is the hierarchical structure of education (Provost, students, Student-Life; Administration vs Educators)?
  6. How can we address “Exclusivity Vs Inclusivity” within education (i.e., white, blue, green collars all working together)?
  7. What traditions do we want to keep?
  8. What traditions do we want to eliminate?
  9. How can we offer more value?  How can we offer more by spending less?
  10. How can we accelerate/decelerate the process – what needs to speed up and what needs to slow down?
  11. How can we attract more students from in-state and from out-of-state?
  12. How can we offer more online/hybrid and flip classroom learning?  What other educational methods should we explore?
  13. Who are our clients? Can we identify the student of the future (identity, celebrate, identity)?
  14. How can we establish a “network” of future business/professional relationships?
  15. How can we enable a positive transformation of self-awareness and development into early adulthood?
  16. The “College Experience,” what does this mean?  What will it mean in the future?
  17. How can we become more sustainable?  Are we creating a culture that values the planet?
  18. What are some sustainable strategies that we do well, what are some we need to work on?
  19. How can we utilize our spaces more efficiently during off-hours?
  20. How can we provide better connections to the outdoors, nightlife, theater, arts, dining, sports and other events?
  21. How can we offer more opportunities for community engagement?
  22. How can we consider the college campus as a living laboratory?
  23. What is the changing role of the professor/instructors?
  24. How can we form better interdisciplinary relationships from different colleges to inter-pollinate ideas with one another?
  25. How can we focus and capitalize on our strengths instead of our weakness?
  26. Is the “Tiny house” concept viable for student housing?
  27. Instead of student housing should we follow a “hotel” model?
  28. What does a student center of the future look like? What is a library of the future look like? 
  29. Can we create a new model for (higher) education so our students never stop learning/growing?
  30. Is it viable to transform from a singularly “degree” approach to a “tool box” approach where students gain the building blocks they need for that stage of their career?
  31. What are some public/private partnership opportunities?
  32. How can we promote health and wellness on our campus?
  33. How can we create a walkable campus for all our students and guests?
  34. How can we support our professors and researchers?
  35. How can we develop programs that engage the residents of the state?
  36. How can we develop a culture of caring and giving that shares the same positive values?
  37. How can we capitalize on our close relationship with local parks?
  38. How can we create a better connection with urban areas – Jersey City, Patterson, New York City, etc.?
  39. How can we become an “Innovation” district in our state?
  40. How can we start recruiting students at an earlier age?
  41. How can we better retain our students?
  42. How can we better support our students educational goals?
  43. How can we offer the best college experience for our students?
  44. How can our built facilities improve lives of the people we serve?
  45. How can our grounds improve lives of the people we serve?
  46. How can our people (bus drivers, gardeners, housekeepers, librarians, etc.) improve lives of the people we serve?
  47. How can we become an institution that others want to emulate?
  48. Is there a way that we can work with industry/business partners to leverage our role as an academic research facility?
  49. How can we make learning fun and enjoyable?
  50. How can we offer more meaning to people’s lives?

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


University Architect @FrankCunhaIII Leads Architectural Walking Tour of @MontclairStateU’s Campus for Architect Guests, @AIANJ AIA Newark Suburban #AIA #University #Architect

On May 18th, AIA Newark Suburban held a campus walking tour of Montclair State University led by fellow member, Architect Frank Cunha III, AIA.  The tour addressed the history of the campus and the way it has been designed and constructed to protect and promote the health, safety, and welfare of the occupants of the buildings and grounds.

Building on a distinguished history dating back to 1908, Montclair State University is a leading institution of higher education in New Jersey.  Designated a Research Doctoral University by the Carnegie Classification of Institutions of Higher Education, the University’s 11 colleges and schools serve more than 21,000 undergraduate and graduate students with more than 300 doctoral, master’s and baccalaureate programs. Situated on a beautiful, 252-acre suburban campus just 12 miles from New York City, Montclair State delivers the instructional and research resources of a large public university in a supportive, sophisticated and diverse academic environment. University Facilities currently manages 70 buildings and approximately 5 million gross square feet of space on our campus. More information available: https://www.montclair.edu/about-montclair

Frank Cunha III, AIA, University Architect, has been with the University Facilities team since 2007.  Since graduating from the New Jersey Institute of Technology School of Architecture in 1998, he has obtained licenses to practice architecture in 9 states.  Frank is currently completing his Masters in Business Administration at Montclair State University and expects to graduate in May 2019.

Frank is passionate about strategic planning, architectural design and constructing of complex projects in a challenging and ever-changing environment.  He considers the environment, energy, and the health and wellness of the occupants during all phases of the project while addressing the programming needs to ensure the stakeholder’s program requirements are met and align with the organization’s mission, vision and values.

With the assistance of his design and construction teams, Frank has been responsible for many projects of various size and scope around campus. Some project highlights include: Student Recreation Center, Center for Environmental Life Sciences, Cali School of Music, School of Nursing, the Center for Computing and Information Science, Sinatra Hall, School of Business, Schmitt Hall and historic renovation and addition to College Hall, to name a few.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Ask the Architect: Why Does Indoor Air Quality Matter?#LEED #WELL #Health #Wellness #Safety #Architect #ilmaBlog

Simply put, indoor air quality matters because human beings are spending more and more time indoors. It is becoming more important than ever to make sure that the buildings that we design, construct and occupy are suitable and safe for the occupants. The following article will draw on both research and experience in the design and construction of high performance buildings to help elaborate on this simple response.

Interesting Facts To Consider About Indoor Air Quality:

  • Indoor air often contains 4X to 10X the amount of pollutants of outdoor air.
  • Many studies have linked exposure to small particles (PM 2.5—defined as airborne particles smaller than 2.5 microns) with heart attacks, cardiac arrhythmias, strokes, chronic obstructive pulmonary disease, worsened symptoms of asthma, and an increased risk of respiratory illness.
  • The World Health Organization says that particulate matter contributes to about 800,000 premature deaths each year, making it the 13th leading cause of death worldwide.

The built environment around us plays a fundamental role in our overall well-being, particularly the indoor spaces that we inhabit to live, work, learn, play and pray, since most of us spend about 90% of our time indoors.  The buildings that we as Architects design and construct have a distinctive capability to positively or negatively impact our health and wellbeing. The air that we breathe inside a building can have a greater consequence on our health.  Unfortunately, many contaminants are not visible in the air, so we might not know that they are there.  Inhaling air or poor quality can lead to a number of health conditions, including but not limited to:  allergies, respiratory disorders, headaches, sore throat, lethargy and nausea.

Sick Building Syndrome

According to the EPA, sick building syndrome (SBS) is used to describe a situation in which the occupants of a building experience acute health- or comfort-related effects that seem to be linked directly to the time spent in the building. No specific illness or cause can be identified. The complainants may be localized in a particular room or zone or may be widespread throughout the building.

LEED Requirements

As more buildings are LEED certified, here are some things to consider about your next project:

To contribute to the comfort and well-being of building occupants by establishing minimum standards for indoor air quality (IAQ) after construction and during occupancy, USGBC LEED v4 requires that the project meet one of the following:

  • Minimum indoor air quality performance: Option 1. ASHRAE Standard 62.1–2010 or Option 2. CEN Standards EN 15251–2007 and EN 13779–2007.
  • Indoor air quality assessment: Path 1 Option 1. Flush-out, or Path 2. Option 1. During occupancy, or Path 2. Option 2. Air testing – Note: these cannot be combined.

Occupants are increasingly paying more attention to the conditions of their work environment as it relates to health and wellness. This is especially the case for researchers and their lab environments. We see surging growth in universities adopting lab design programs such as Smart Labs which places an emphasis in the indoor environment quality of the lab and through certification programs as:

We need to have a real-time measurement of the all contaminants of inside air and match that with real time control of the outside air coming into the environment. Ideally, we need to design and build facilities that:

  • Bring in lots of outside air—but only exactly where and when we need it.
  • Measures and controls more than just temperature and CO2.
  • Displays the ventilation performance for the building’s occupants.

Health and Cognitive FunctionPerformance Enhancements

Cognitive functions encompass reasoning, memory, attention, and language and lead directly to the attainment of information and, thus, knowledge. United Technologies and The Harvard School of Public Health prepared a study that was designed to simulate indoor environmental quality conditions in green and conventional buildings and evaluate the impacts on an objective measure of human performance—cognitive function.  The findings of the report concluded that the impact of the indoor air quality on the productivity of the occupants which revealed the following benefits:

  • Lowering the levels of CO2 and VOCs resulted in their participants scoring 61% higher on cognitive function tests compared with those in conventional offices.
  • There was a 101% improvement on their cognitive function tests when the ventilation levels were doubled above the standard ASHRAE prescribed levels.
  • Information usage scores were 299% higher than conventional offices when the ventilation rates were doubled.

The conclusion of this study is very clear: verified ventilation performance will increase employee and student performance.

Sources & References:

Is Your Building Ventilated Like It’s 1978? By Tom Kolsun

USGBC V4 Requirements for indoor environmental quality

Further Reading:

EPA – An Office Building Occupants Guide to Indoor Air Quality

#IAQmatters

EPA – Indoor Air Quality

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

For More Questions and Answers please check out:
Architects @WJMArchitect And @FrankCunhaIII Respond to ILMA Fan’s Questions “ASK THE ARCHITECT”

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


New Campus Center at Springfield Technical Community College #UniversityArchitect #Rehabilitation #Community #College #Architecture #Transformation #ilmaBlog

All Photos: Chuck Choi

Combining historic preservation, adaptive reuse, and contemporary architecture, Springfield Technical Community College’s new Campus Center repurposes a 764-foot-long by 55-foot-wide warehouse building originally constructed between 1846 and 1864.

A major aspect of the Springfield, Massachusetts, University’s Campus Center is The Ira H. Rubenzahl Student Learning Commons. The Campus Center and Student Learning Commons consolidate academic services and student life activities under one roof. Corten steel canopies along the building’s facade distinguish new entrances into each hub.

Click Here to read the rest of the story.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Will Higher Education Look Like 5, 10 or 20 Years From Now? Some Ways Colleges Can Reinvent Themselves #iLMA #eMBA #Innovation #Technology #Planning #Design #HigherEducation #HigherEd2030 #University #Architect

Introduction

Change is a natural and expected part of running a successful organization. Whether big or small, strategic pivots need to be carefully planned and well-timed. But, how do you know when your organization is ready to evolve to its next phase? Anyone that listens, watches, or reads the news knows about the rising cost of higher education and the increasing debt that education is putting on students and alumni and their families.

At a time when education is most important to keep up with increasing technological changes, institutions need to pivot or face imminent doom in an ever increasing competitive environment. Competition can come from startups or external factors in the higher education market therefore it is increasingly necessary for institutions of higher learning to take a different approach to their business operations.

This post will focus on:

  • Current Trends
  • Demographic Shifts
  • Future of Higher Education (and impacts on University Facilities & Management)
    • Changing Assumptions
    • Implications for the Physical Campus
    • Changing Trajectory
    • More Trends in Higher Education (Towards 2030)
  • Driving Technologies
  • External Forces

Current Trends

  • Online education[i] has become an increasingly accepted option, especially when “stackable” into degrees.
  • Competency-based education lowers costs and reduces completion time for students.
  • Income Share Agreements[ii] help students reduce the risk associated with student loans.
  • Online Program Manager organizations benefit both universities and nontraditional, working-adult students.
  • Enterprise training companies are filling the skills gap by working directly with employers.
  • Pathway programs facilitate increasing transnational education[iii], which serves as an additional revenue stream for universities.

Demographic Shifts

According to data from the National Clearinghouse and the Department of Education[iv]:

  • The Average Age of a College/University Student Hovers Around Twenty-Seven (Though That Is Decreasing as The Economy Heats Up)
  • 38% of Students Who Enrolled In 2011 Transferred Credits Between Different Institutions At Least Once Within Six Years.
  • 38% of Students Are Enrolled Part-Time.
  • 64% of Students Are Working Either Full-Time or Part-Time.
  • 28% of Students Have Children of Their Own or Care For Dependent Family Members.
  • 32% of Students Are from Low-Income Families.
  • The Secondary Education Experience Has an Increasingly High Variation, Resulting In Students Whose Preparation For College-Level Work Varies Greatly.

Future of Higher Education (and impacts on University Facilities & Management)

The future of higher education depends on innovation. 

University leaders who would risk dual transformation are required to exercise full commitment to multiple, potentially conflicting visions of the future. They undoubtedly confront skepticism, resistance, and inertia, which may sway them from pursuing overdue reforms.[v]

Change is upon us.

“All universities are very much struggling to answer the question of: What does [digitization[vi]] mean, and as technology rapidly changes, how can we leverage it?” . . . . Colleges afraid of asking that question do so at their own peril.”[vii]

James Soto Antony, the director of the higher-education program at Harvard’s graduate school of education.

Changing Assumptions

Until recently the need for a physical campus was based on several assumptions:

  • Physical Class Time Was Required
  • Meaningful Exchanges Occurred Face to Face
  • The Value of an Institution Was Tied to a Specific Geography
  • Books Were on Paper
  • An Undergraduate Degree Required Eight Semesters
  • Research Required Specialized Locations
  • Interactions Among Students and Faculty Were Synchronous

Implications for the Physical Campus

  • Learning – Course by course, pedagogy is being rethought to exploit the flexibility and placelessness of digital formats while maximizing the value of class time.
  • Libraries – Libraries are finding the need to provide more usable space for students and faculty.  Whether engaged in study, research or course projects, the campus community continues to migrate back to the library.
  • Offices – While the rest of North America has moved to mobile devices and shared workspaces, academic organizations tend to be locked into the private, fixed office arrangement of an earlier era – little changed from a time without web browsers and cell phones. 
  • Digital Visible – From an institutional perspective, many of the implications of digital transformation are difficult to see, lost in a thicket of business issues presenting themselves with increasing urgency. 

Changing Trajectory

University presidents and provosts are always faced with the choice of staying the course or modifying the trajectory of their institutions.  Due to failing business models, rapidly evolving digital competition and declining public support, the stakes are rising.  All should be asking how they should think about the campus built for the 21st century.[viii]  J. Michael Haggans[ix] makes the following recommendations:

  • Build no net additional square feet
  • Upgrade the best; get rid of the rest
  • Manage space and time; rethink capacity
  • Right-size the whole
  • Take sustainable action
  • Make campus matter

More Trends in Higher Education (Towards 2030)

  • The Rise of The Mega-University[x]
  • ; Public Private Partnerships (P3’s) Procurement Procedures Will Become More Prevalent
  • More Colleges Will Adopt Test-Optional Admissions
  • Social Mobility Will Matter More in College Rankings
  • Urban Colleges Will Expand[xi] — But Carefully
  • Financial Crunches Will Force More Colleges to Merge
  • The Traditional Textbook Will Be Hard to Find; Free and Open Textbooks
  • More Unbundling and Micro-Credentials
  • Continued Focus on Accelerating Mobile Apps
  • Re-Imagining Physical Campus Space in Response to New Teaching Delivery Methods
  • Transforming the Campus into A Strategic Asset with Technology
  • Education Facilities Become Environmental Innovators
  • Ethics and Inclusion: Designing for The AI Future We Want to Live In
  • Visibility (Transparency) And Connectedness
  • Sustainability from Multiple Perspectives
  • Better Customer Experiences with The Digital Supply Chain
  • Individualized Learning Design, Personalized Adaptive Learning
  • Stackable Learning Accreditation
  • Increased Personalization: More Competency-Based Education They’ll Allow Students to Master A Skill or Competency at Their Own Pace.
  • Adaptation to Workplace Needs They’ll Adapt Coursework to Meet Employer Needs for Workforce Expertise
  • Greater Affordability and Accessibility They’ll Position Educational Programs to Support Greater Availability.
  • More Hybrid Degrees[xii]
  • More Certificates and Badges, For Example: Micro-Certificates, Offer Shorter, More Compact Programs to Provide Needed Knowledge and Skills Fast[xiii]
  • Increased Sustainable Facilities – Environmental Issues Will Become Even More Important Due to Regulations and Social Awareness; Reduced Energy Costs, Water Conservation, Less Waste
  • Health & Wellness – Physical, Spiritual and Metal Wellbeing
  • Diversity and Inclusion Will Increase
  • Rise of The Micro-Campus[xiv] And Shared Campuses[xv]
  • E-Advising to Help Students Graduate
  • Evidence-Based Pedagogy
  • The Decline of The Lone-Eagle Teaching Approach (More Collaboration)
  • Optimized Class Time (70% Online, 30% Face to Face)
  • Easier Educational Transitions
  • Fewer Large Lecture Classes
  • Increased Competency-Based and Prior-Learning Credits (Credit for Moocs or From “Real World” Experience)[xvi]
  • Data-Driven Instruction
  • Aggressive Pursuit of New Revenue
  • Online and Low-Residency Degrees at Flagships
  • Deliberate Innovation, Lifetime Education[xvii]
  • The Architecture of The Residential Campus Will Evolve to Support the Future.
  • Spaces Will Be Upgraded to Try to Keep Up with Changes That Would Build In Heavy Online Usage.
  • Spaces Will Be Transformed and Likely Resemble Large Centralized, Integrated Laboratory Type Spaces. 
  • Living-Learning Spaces in Combination Will Grow, But On Some Campuses, Perhaps Not In The Traditional Way That We Have Thought About Living-Learning To Date.

Driving Technologies:

  • Emerging Technologies – Such as Augmented Reality, Virtual Reality, And Artificial Intelligence – Will Eventually Shape What the Physical Campus Of The Future Will Look Like, But Not Replace It.[xviii]
  • Mobile Digital Transformation[xix]
  • Smart Buildings and Smart Cities[xx]
  • Internet of Things
  • Artificial Intelligence (AI), Including Natural Language Processing
  • Automation (Maintenance and Transportation Vehicles, Instructors, What Else?)
  • Virtual Experience Labs, Including: Augmented Reality, Virtual Reality Learning, And Robotic Telepresence 
  • More Technology Instruction and Curricula Will Feature Digital Tools and Media Even More Prominently
  • New Frontiers For E-Learning, For Example, Blurred Modalities (Expect Online and Traditional Face-To-Face Learning to Merge)[xxi]
  • Blending the Traditional; The Internet Will Play Bigger Role in Learning
  • Big Data: Colleges Will Hone Data Use to Improve Outcomes

External Forces:

  • [xxii]: Corporate Learning Is A Freshly Lucrative Market
  • Students and Families Will Focus More on College Return On Investment, Affordability And Student Loan Debt
  • [xxiii]
  • Greater Accountability; Schools will be more accountable to students and graduates
  • Labor Market Shifts and the Rise of Automation
  • Economic Shifts and Moves Toward Emerging Markets
  • Growing Disconnect Between Employer Demands and College Experience 
  • The Growth in Urbanization and A Shift Toward Cities 
  • Restricted Immigration Policies and Student Mobility
  • Lack of Supply but Growth in Demand
  • The Rise in Non-Traditional Students 
  • Dwindling Budgets for Institutions[xxiv]
  • Complex Thinking Required Will Seek to Be Vehicles of Societal Transformation, Preparing Students to Solve Complex Global Issues

Sources & References:


[i] Online education is a flexible instructional delivery system that encompasses any kind of learning that takes place via the Internet. The quantity of distance learning and online degrees in most disciplines is large and increasing rapidly.

[ii] An Income Share Agreement (or ISA) is a financial structure in which an individual or organization provides something of value (often a fixed amount of money) to a recipient who, in exchange, agrees to pay back a percentage of their income for a fixed number of years.

[iii] Transnational education (TNE) is education delivered in a country other than the country in which the awarding institution is based, i.e., students based in country Y studying for a degree from a university in country Z.

[iv] Article accessed on April 16, 2019: https://er.educause.edu/articles/2019/3/changing-demographics-and-digital-transformation

[v]Article accessed on April 16, 2019: https://ssir.org/articles/entry/design_thinking_for_higher_education

[vi] Digitization is the process of changing from analog to digital form.

[vii] Article accessed on April 16, 2019:  https://qz.com/1070119/the-future-of-the-university-is-in-the-air-and-in-the-cloud

[viii] Article accessed on April 16, 2019: http://c21u.gatech.edu/blog/future-campus-digital-world

[ix] Michael Haggans is a Visiting Scholar in the College of Design at the University of Minnesota and Visiting Professor in the Center for 21st Century Universities at Georgia Institute of Technology.  He is a licensed architect with a Masters of Architecture from the State University of New York at Buffalo.  He has led architectural practices serving campuses in the US and Canada, and was University Architect for the University of Missouri System and University of Arizona.

[x] Article accessed on April 16, 2019:  https://www.chronicle.com/interactives/Trend19-MegaU-Main

[xi] Article accessed on April 16, 2019:  https://www.lincolninst.edu/sites/default/files/pubfiles/1285_wiewel_final.pdf

[xii] Article accessed on April 16, 2019: https://www.fastcompany.com/3046299/this-is-the-future-of-college

[xiii] Article accessed on April 16, 2019: https://www.govtech.com/education/higher-ed/Why-Micro-Credentials-Universities.html

[xiv] Article accessed on April 16, 2019: https://global.arizona.edu/micro-campus

[xv] Article accessed on April 16, 2019: https://evolllution.com/revenue-streams/global_learning/a-new-global-model-the-micro-campus

[xvi] Article accessed on April 16, 2019:  https://www.chronicle.com/article/The-Future-Is-Now-15/140479

[xvii] Article accessed on April 16, 2019:  https://evolllution.com/revenue-streams/market_opportunities/looking-to-2040-anticipating-the-future-of-higher-education

[xviii] Article accessed on April 16, 2019: https://www.eypae.com/publication/2017/future-college-campus

[xix] Article accessed on April 16, 2019: https://edtechmagazine.com/higher/article/2019/02/digital-transformation-quest-rethink-campus-operations

[xx] Article accessed on April 16, 2019: https://ilovemyarchitect.com/?s=smart+buildings

[xxi] Article accessed on April 16, 2019: https://www.theatlantic.com/education/archive/2018/04/college-online-degree-blended-learning/557642

[xxii] Article accessed on April 16, 2019: https://qz.com/1191619/amazon-is-becoming-its-own-university

[xxiii] Article accessed on April 16, 2019: https://www.fastcompany.com/3029109/5-bold-predictions-for-the-future-of-higher-education

[xxiv] Article accessed on April 16, 2019: https://www.acenet.edu/the-presidency/columns-and-features/Pages/state-funding-a-race-to-the-bottom.aspx

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Augmented Reality Enables Children to Learn in the Real World #ilmaBlog #Education #VR #Technology #Classroom #MyUniversityArchitect #Architect

MBDs (Mobile broadband devices, or smartphones) allow students to access and collect additional information and clues. Students use EcoMOBILE activities developed with an augmented reality application, to navigate between “hotspots,” view information, answer questions, and observe virtual media overlaid on the physical pond.

Students can capture pictures, video, or voice recordings and take these back to the classroom to help make sense of school lessons. Through augmented reality we provide students with visualizations that would not otherwise be apparent in the natural environment (for example, virtual x-ray vision so that they can “see” a virtual carbon atom as it moves through the processes of photosynthesis and respiration).

These augmented reality experiences allow students to conceptualize and discuss processes and complex relationships that are otherwise difficult to describe or visualize.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What About Public Private Partnerships? #ilmaBlog #HigherEducation #P3 #PPP #University #Architect

Example of Stakeholder Team (Source: Servitas)

Background on Public Private Partnerships (P3’s):

Many institutions of higher education are facing mounting pressure on their mission to deliver high-quality, affordable education to students and perform world-class research. Reductions in public funding support and concerns about overall affordability present substantial near-term and longer-term budget challenges for many institutions.

Public institutions are predominantly affected, having been constrained by suspensions or reductions in state funding. State appropriations across the US grew by just 0.5% annually between 2005 and 2015. State funding has still not recovered to 2008 levels, the last year in which state funding decisions would not have been affected by the Great Recession.

(Source: Integrated Postsecondary Education Data System (IPEDS) — state appropriations revenue divided by total fall enrollment, 2005–15)

Public-private partnership models are continuing to proliferate as cash-strapped colleges and universities seek to replace or update aging and outdated infrastructure amid tight finances.

(Source: Proliferating Partnerships)

What is the P3 Delivery Model?

A public-private partnership, or P3, is long-term agreement between a public entity and a private industry team that is tasked with designing, building, financing, operating and maintaining a public facility. The past decade has seen a steady increase in the use of P3 structures, both inside and outside higher education. In 2016, something of a watershed year for P3, multiple high-profile projects came online in response to a variety of public needs, including a $1-billion-plus water infrastructure project servicing San Antonio, and a $300-million-plus renovation of the Denver International Airport’s Great Hall.

(Source: A Few Lessons About Public-Private Partnerships)

“Public” is a non-profit institutional or governmental entity that engages a “private” for-profit entity to pay for a particular project.

The “private” partner provides funding (and often expertise) to deliver (and often operate) the project used by the “public” entity to meet its purposes.

In return for its capital, the “private” entity gets a revenue flow from the asset it has paid for.

(Source: Should your University enter into a Public/Private Partnership – the Pro’s and Con’s)

The emergence of the P3 option is happening where it matters most: projects that would be otherwise unattainable under the traditional public-improvement delivery models. For instance, 10 years ago, only a handful of higher education P3 projects were up and running; today, we are approaching three dozen such projects.

The biggest challenge is, of course, the financing component, but P3 teams bring much more to the table than money — they give public entities access to expertise and innovation that can add significant value to projects at each phase of development.

(Source: A Few Lessons About Public-Private Partnerships)

Motivations for P3 transactions vary widely, but include:

  • Supplementing traditional debt instruments. These include private capital, using off balance sheet or alternative mechanisms.
  • Transfer of risk. Historically, universities have born all or most of the risk of facilities-related projects themselves. A P3 is a way to either transfer or at least share the risk.
  • Speed and efficiency. A P3 allows for a faster development process, and time to completion is generally shorter and on schedule. The sole focus of the private entity is to complete the project on budget and on time. University infrastructure tends to have competing priorities across all-campus facility needs.
  • Outsourcing provision of non-core assets. Outsourcing allows institutions to focus investment of internal resources and capabilities on those functions that are closer to the academic needs of its students.
  • Experience. Private partners often have much more experience and skills in a particular development area (e.g., facility architecture and infrastructure, student housing needs) and are able to better accommodate the needs of students, faculty, administrators, etc.
  • Planning and budgeting. Private partners offer experience and know-how in long-term maintenance planning and whole life cycle budgeting.

(Source: Public-private partnerships in higher education What is right for your institution?)

The four types of P3s:

  • Operating contract/management agreement. Short- to medium-term contract with private firm for operating services
  • Ground lease/facility lease. Long-term lease with private developer who commits to construct, operate and maintain the project
  • Availability payment concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for annual payments subject to abatement for nonperformance
  • Demand-risk concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for rights to collect revenues related to the project

Pro’s and Con’s of P3’s:

Since their emergence in student housing several years ago, P3s have become important strategies for higher education institutions because of the many benefits they offer, including:

  • Lower developer costs
  • Developer expertise
  • Operational expertise
  • Access to capital
  • Preservation of debt capacity
  • More favorable balance sheets and credit statements
  • Risk mitigation
  • Faster procurement and project delivery (It can typically take a university about 5 years to get a project built. With a P3, that process can be reduced to just 2 years. Additionally, P3s can save approximately 25% in costs compared to typical projects.)

Beyond the above, the indirect advantages of P3s in student housing are numerous, such as they:

  • Provide better housing for students
  • Expand campus capacity
  • Create high-quality facilities
  • Expand the tax base for both a city and county
  • Provide an economic boost to surrounding areas, which likely lead to private growth and other improvements

It is important to note that, while there are many benefits of P3s for higher education institutions, these agreements also have disadvantages that need to be considered, including:

  • High cost of capital
  • Reduced control for the university
  • Complexity of deals
  • Multi-party roles and responsibilities
  • Limitation on future university development

(Source: Student Housing A Hot Sector For Public-Private Partnerships)

A LOOK AHEAD

Where Are We Heading?

  • More political involvement and pressure to consider P3
  • Pre-development Risks – Many projects failing to close
  • Issues with Construction Pricing & Labor Shortages
  • An increasing number of developers are getting in the on-campus business; however, developers are being more strategic on which projects/procurements to respond to
  • Exploration of other sources of funds like tax credits, USDA, and opportunity zones
  • Shared governance continues to grow
  • Larger, more complex P3 projects including long term concessions, availability payment models, Key Performance Indicators (KPIs)
  • Bundling of Procurements (food, housing (including faculty), academic buildings, hotel, energy, facility maintenance, etc.)

Further Reading:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Higher Education

Blog Posts Related to Higher Education

  1. Library of the Future – For Colleges & Universities
  2. Mansueto Library by JAHN
  3. Creative Arts Center at Brown University by Diller Scofidio + Renfro
  4. What is a High Performance School?
  5. Architect’s Sketchbook – Montclair State University (Sketches by @FrankCunhaIII, 2017)
  6. 13 Examples of Green Architecture
  7. WELL Communities: Health & Wellness Lifestyle
  8. You Know LEED, But Do You Know WELL?
  9. The 2030 Challenge for Planning @Arch2030
  10. What is The 2030 Challenge? @Arch2030
  11. Smart Cities
  12. Top 20: Technology & Innovation Ideas For Architects

My Higher Education Projects

  1. New Computer Science Facility for College of Science & Mathematics
  2. School of Nursing & Graduate School
  3. New Research Facility, Montclair State University
  4. Conrad J. Schmitt Hall Renovation, Montclair State University
  5. Frank Sinatra Hall, Montclair State University
  6. Music School, Montclair State University
  7. Student Recreation Center, Montclair State University
  8. College Hall (In Progress)
  9. Conceptual Design – Adaptive Re-Use of Existing Cogeneration Plant
  10. Conceptual Design – Study Atrium
  11. Small Project – Successful Conversion (Tech Classrooms) Before & After
  12. New Center for Environmental Life Sciences
  13. Babbio Center, Stevens Institute of Technology

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook

 


Mansueto Library by JAHN

JAHN is an international architectural firm with over 75 years of experience that has achieved critical recognition and won numerous awards. JAHN’s ability to integrate design creativity and corporate professionalism makes it a leading firm in global design Innovation.

The Joe and Rika Mansueto Library opened at the heart of the University of Chicago campus in 2011. It features a soaring elliptical glass dome capping a 180-seat Grand Reading Room, state-of-the-art conservation and digitization laboratories, and an underground high-density automated storage and retrieval system. The Mansueto Library speeds scholarly productivity by allowing for the retrieval of materials within an average time of 3 minutes through use of robotic cranes. Designed by renowned architect Helmut Jahn, the Mansueto Library has been recognized with a Distinguished Building Citation of Merit by the American Institute of Architects’ Chicago chapter and a Patron of the Year Award by the Chicago Architecture Foundation.

Joe and Rika Mansueto Library-01Joe and Rika Mansueto Library-02Joe and Rika Mansueto Library-04aJoe and Rika Mansueto Library-05Joe and Rika Mansueto Library-01bJoe and Rika Mansueto Library-02aJoe and Rika Mansueto Library-01aJoe and Rika Mansueto Library-03Joe and Rika Mansueto Library-04Joe and Rika Mansueto Library-00-SketchesJoe and Rika Mansueto Library-00-SiteJoe and Rika Mansueto Library-00-ElevationJoe and Rika Mansueto Library-00-Cross-Section
Location:
University of Chicago, Chicago, IL, United States
Architect: JAHN
Lead Designer: Helmut Jahn
Area: 58,700 SF
Project Year: 2011

The site in the center of theUniversity of Chicago’s Campus is surrounded by a variety of different buildings. With a mixture of styles, ranging from the gothic quadrangle to the south, the Limestone Brutalism of Netsch’s Regenstein Library to the east, the Henry Moore monument and Legorreta’s colorful Student Housing to the north and a building to the west, which will be replaced by a new Science Building. There is not much to relate to.

The problem was to store 3.5 million books with an Automated Storage and Retrieval System (ASRS). The expectations in the brief suggested to house those in a well-designed “Box” above grade. In an effort to infringe as little as possible with the open space, make the Reading Room and the Preservation Department the most pleasant space to be in and in line with our approach to challenge habitual conventions, we opted to put the books below grade, where their environment can be better controlled to achieve the desired constant temperature and humidity of 60 degrees, 30% RH – at less cost. The people-oriented spaces could thus be located at grade in a minimal elliptical glass dome, which fits the context, because it defies conventional relationships.

Murphy Jahn think it has been embraced by the leadership of the University, because it represents the mission of theUniversity of Chicago  as catalyst for the advancement of knowledge. It is interesting that this happened at an Institution where the disciplines of Architecture and Engineering are not taught, but a spirit prevails to go beyond where others stop. Science, Physics, the liberal and applied Art start, when others think they are complete.

Once a consensus on the design was reached, the normal process started to solve the problem: comfort and sustainability, light-control, structure, life-safety, operation and maintenance.

The structural grid-shell of 120 x 240 feet and the insulated glazing represent a very minimal and intelligent system for mediating between the varying exterior conditions and the desired interior comfort.

At the interior there is a seamless integration between lighting, air supply and furnishings, which were fabricated in solid European White Oak.

More than anybody the users will benefit from an environment that is pleasant and conductive to study and research. This is not your classical Library, but points to the library of the future.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Library of the Future – For Colleges & Universities

If the classroom is the heart of higher education, the library is its soul.

Brief History of College Libraries

Typically, undergraduate libraries were not often discussed during the first part of the 20th century — It was thought that the basic library collections were able to meet the needs of all users, undergraduates, graduate students and faculty.

As a result of the rapid increase in the student population after World War II, undergraduate service became an issue for library and university administrators. With the growth of a complex research-oriented library and university system, undergraduate students were often bewildered. Huge card catalogs, closed book stacks and extensive reference materials overwhelmed new students and many did not seek assistance.

Harvard’s Lamont Library was the first large university’s effort to open an undergraduate library. Many other universities followed suit, such as Michigan, Texas and South Carolina. Some established full-scale libraries while others provided separate reading rooms aimed at undergraduates. One characteristic of these projects was that the books were housed in open stacks. Through design and layout undergraduate libraries and reading rooms tried to convey an informal and accessible air.

(Source: https://www.library.wisc.edu/college/about-college/history-of-college-library/)

Robert W Woodruff Library, Atlanta University Center

Robert W. Woodruff Library- Atlanta University Center

“Libraries need to break out…. We need to rethink our whole attitude about the relationship between students and space, furniture, and information, and redefine what a library should be.”

–Lee Van Orsdel Dean of University Libraries, Grand Valley State University

Library of the Future - Gensler-TrendsIn a digital world, libraries are “ripe for reinvention,” says Derek Jones, Principal in Perkins+Will’s Raleigh, N.C., office. Colleges are trimming the space their libraries allocate for books and storage and are forming consortiums to share resources. Digitization is facilitating just‑in‑time delivery of information and materials, although, as Jones points out, “when you have a million items and no budget, digitizing can be a formidable task.”

Library of the Future - EvolutionSteelcase WorkSpace Futures researchers and designers have developed key design principles for planning 21st century libraries. Like the classroom design principles, they’re based on primary user-centered research. The library design principles reflect the changed nature of a library in higher education today:

  • Design library spaces that support social learning
  • Support the librarian’s evolving role
  • Optimize the performance of informal spaces
  • Plan for adjacencies
  • Provide for individual comfort, concentration, and security
  • Provide spaces that improve awareness of, and access to, library resources

Library of the Future_Page_2

Library of the Future_Page_3

These top 10 highlights capture the big picture themes of organizational change that need to take place to develop a Library of the Future for institutions of higher education:

Libraries remain the gatekeepers to rich tapestries of information and knowledge. As the volume of web resources increases, libraries are charged with finding new ways to organize and disseminate research to make it easier to discover, digest, and track.

Incorporating new media and technologies in strategic planning is essential. Libraries must keep pace with evolving formats for storing and publishing data, scholarly records, and publications in order to match larger societal consumption trends favoring video, visualizations, virtual reality, and more.

In the face of financial constraints, open access is a potential solution. Open resources and publishing models can combat the rising costs of paid journal subscriptions and expand research accessibility. Although this idea is not new, current approaches and implementations have not yet achieved peak efficacy.

Libraries must balance their roles as places for both independent study and collaboration. Flexibility of physical spaces is becoming paramount for libraries to serve as campus hubs that nurture cross-disciplinary work and maker activities — without eschewing their reputations as refuges for quiet reflection.

Catering to patrons effectively requires user centric design and a focus on accessibility. Adopting universal design principles and establishing programs that continuously collect data on patron needs will make libraries the ultimate destination for learning support and productivity.

Spreading digital fluency is a core responsibility. Libraries are well-positioned to lead efforts that develop patrons’ digital citizenship, ensuring mastery of responsible and creative technology use, including online identity, communication etiquette, and rights and responsibilities.

Libraries must actively defend their fundamental values. In times of economic and political unrest, libraries will be challenged to uphold information privacy and intellectual freedom while advocating against policies that undermine public interests and net neutrality.

Advancing innovative services and operations requires a reimagining of organizational structures. Rigid hierarchies are no longer effective. To meet patrons’ needs, libraries must draw from different functional areas and expertise, adopting agile, matrix like paradigms.

Enabled by digital scholarship technologies, the research landscape is evolving. GIS data, data visualization, and big data are expanding how information is collected and shared. These tools are helping libraries preserve and mine their collections while illuminating collaborative opportunities.

Artificial intelligence and the Internet of Things are poised to amplify the utility and reach of library services. These emerging technologies can personalize the library experience for patrons, connecting them more efficiently to resources that best align with their goals.

(Sources: http://uwmltc.org/wp-content/uploads/2014/05/360_Issue60-1-small.pdf and https://www.steelcase.com/research)

Library of the Future_Page_1We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Using 3-D Technology to Evaluate Existing Conditions & Brainstorm Conceptual Design Options

Quick Conceptual Hand Sketch by Frank Cunha III

IMG-3546

Google Photograph of Existing Conditions

7-3-18 original

3-D Model of Existing Conditions by Michael Chiappa

7-3-18

Exploded 3-D Model of Existing Conditions by Michael Chiappa

7-4-18.jpgFollow Michael Chiappa on Instagram and LinkedIn.

Software: Rhino 6; Photoshop

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


You Know LEED, But Do You Know WELL?

Greetings,

The following is a quick recap of the LEED rating system; below is information about the WELL rating information.

What is LEED?

LEED, or Leadership in Energy and Environmental Design, is the most widely used green building rating system in the world. Available for virtually all building, community and home project types, LEED provides a framework to create healthy, highly efficient and cost-saving green buildings. LEED certification is a globally recognized symbol of sustainability achievement.

  • 2.2 million + square feet is LEED certified every day with more than 92,000 projects using LEED.
  • Flexible. LEED works for all building types anywhere. LEED is in over 165 countries and territories.
  • Sustainable. LEED buildings save energy, water, resources, generate less waste and support human health.
  • ValueLEED buildings attract tenants, cost less to operate and boost employee productivity and retention.

This slideshow requires JavaScript.

WHAT IS WELL?

The WELL Building Standard® is a performance-based system for measuring, certifying, and monitoring features of the built environment that impact human health and wellbeing, through air, water, nourishment, light, fitness, comfort, and mind.

WELL is managed and administered by the International WELL Building Institute (IWBI), a public benefit corporation whose mission is to improve human health and wellbeing through the built environment.

WELL is grounded in a body of medical research that explores the connection between the buildings where we spend more than 90 percent of our time, and the health and wellness of its occupants. WELL Certified™ spaces and WELL Compliant™ core and shell developments can help create a built environment that improves the nutrition, fitness, mood, and sleep patterns.

The WELL Building Standard® is third-party certified by the Green Business Certification Incorporation (GBCI), which administers the LEED certification program and the LEED professional credentialing program.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Our Exclusive ILMA Interview with Jeff Venezia, AIA of @DIGroupArch

Who is Jeff Venezia, AIA?

Jeff holds a Bachelor of Science in Architecture from the University of Virginia and has practiced in New Brunswick since 1981. He is presently a Principal Owner and President ofDIGroupArchitecture, a 32 person firm specializing in K-12 Education, Higher Ed, Senior Living and Healthcare. He heads the design and marketing efforts of the firm as well as the Academic Studio which includes K-12 and Higher Ed.

About the Firm

DIGroupArchitecture is a process-centric architecture and design firm. We work tirelessly with our clients to understand their priorities, evaluate the physical and budgetary constraints, and communicate potential options. As a result we create distinctive design solutions that help our clients achieve their vision, with unwavering attention to detail at every scale.

It is our unbiased approach to scale that helps us evolve in the changing climate of contemporary architecture. As many of our clients’ priorities have shifted away from ground-up architecture to renovations and adaptive reuse, our interiors studio has flourished and our graphic design studio has developed a diverse portfolio of projects in environmental graphics, signage and wayfinding, and brand identity.

80% of our business comes from repeat clients.They appreciate our “whatever it takes” approach and principal involvement at every level of every project. Our goal is to make every client a “legacy” client doing project after project and improving the experience of those who occupy the facilities we have created together as partners.

         Memorial Elementary School

         Phillipsburg High School

         Remsen Ave. Firehouse

         Jonathan Dayton High School Media Center

 

Click to Follow the DIGroup: Facebook, Twitter, LinkedIn

ILMA INTERVIEW

When and why did you decide to become an Architect?     

I’ve wanted to be an architect since I was about 12 years old.  I loved model building, drawing and construction and just knew from that time on what I wanted to be.

What were some of the challenges of achieving your dream?

I think the biggest challenge has always been living up to the level of trust your clients place on you to deliver a project that meets or exceeds their expectations.

Any memorable clients or project highlights?  

Most clients are memorable in their own way.  Since a lot of our work is for repeat clients we get to know them extremely well over time, both professionally and personally.  The best highlights of any of our projects is the reaction of the end users as to how we’ve improved the quality of their everyday lives.  That occurs most often in our Healthcare, K-12, Senior Living and Community Rooms projects.  One of our top highlights was having our Memorial Elementary School in East Brunswick receive the 2013 AIA New Jersey Honor Award for Excellence in Design, the first NJ public school to be recognized with that award (see photos above).

How do Architects measure success?     

We measure success by how a project meets the goals established in the very beginning, especially with regard to program, design, budget and schedule.

Good design does not have to cost more – it requires patience and commitment to doing it right.

Grow the business, develop a transition of ownership strategy, continue to focus on improving our architectural, interior and graphic capabilities.

Who is your favorite Architect? Why?  

Unquestionably Alvar Aalto.  I love the way his buildings embrace the landscape and often look to him for inspiration.

What is your favorite historic and modern (contemporary) project? Why?  

My favorite historic building would be the Pantheon in Rome.  Favorite contemporary – the Kimball Art Museum in Texas by Louis Kahn.

Where do you see the profession going over the next few decades?

We need to reverse the trend of being considered by the public as a commodity.  We need to educate the public and our clients on the value added in what we provide in the services we perform.  We are not copy or toilet paper. 

Who / what has been your greatest influence in design?      

The greatest influence on my design work was my 3rd year architecture professor who demanded only the highest quality work from me and forced me out of my comfort zone to continually strive to learn from every project, to grow and become better as an architect.

Which building or project type would you like to work on that you haven’t been part of yet?   

Airport – I love the idea of doing something at that scale.

If you could not be an Architect, what would you be?    

A National Geographic photographer.

 What advice do you have for a future Executive leader?     

Always be true to yourself, treat people fairly and conduct yourself with the highest level of integrity.  Your word should be your bond.

What are three key challenges you face as a leader in business today and one trend you see in your industry?  

Challenges:  the economy, dealing with diversity in the work place and the ever-increasing reliance on technology.  As mentioned above, the competition and lowering of fees continue on a downward spiral.

What one thing must an executive leader be able to do to be successful in the next 3 years?  

Don’t just adapt to change – embrace it.

What are some executive insights you have gained since you have been sitting in the executive leadership seat – or what is one surprise you have encountered as the world of business continues to morph as we speak?     

Take risks and have the commitment to see them through.  Be a good listener.  Show a concern and appreciation for your employees.  Be proactive in solving problems.  Never let anything fester.  Once the attorneys get involved no one is happy with the outcome.

For more exclusive ILMA interviews click here.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

Gift Ideas from ILMA


What Can Architects Do To Design Safer Classrooms For Our Children? Part 3 Actions We Can Take To Promote Safe And Successful Schools

 ILMA Classroom 05.png

Photo Source: S&S Worldwide

Policies and funding that support comprehensive school safety and mental health efforts are critical to ensuring universal and long-term sustainability. However, school leaders can work toward more effective approaches now by taking the following actions:

  1. Work with School Leadership to promote, develop and establish a “Safety Team” that includes key personnel: principals, teachers, school-employed mental health professionals, instruction/curriculum professionals, school resource/safety officer, and a staff member skilled in data collection and analysis.
  2. Work with the school’s “Safety Team” assess and identify needs, strengths, and gaps in existing services and supports (e.g., availability of school and community resources, unmet student mental health needs) that address the physical and psychological safety of the school community.
  3. Assist with the evaluation of the safety of the school building and school grounds by examining the physical security features of the campus.
  4. Safety Team should review how current resources are being applied.
  5. Are school employed mental health professionals providing training to teachers and support staff regarding resiliency and risk factors?
  6. Do mental health staff participate in grade-level team meetings and provide ideas on how to effectively meet students’ needs?
  7. Is there redundancy in service delivery?
  8. Are multiple overlapping initiatives occurring in different parts of the school or being applied to different sets of students?
  9. Safety Team should implement an integrated approach that connects behavioral and mental health services and academic instruction and learning (e.g., are mental health interventions being integrated into an effective discipline or classroom management plan?).
  10. Safety Team should provide adequate time for staff planning and problem solving via regular team meetings and professional learning communities. Identify existing and potential community partners, develop memoranda of understanding to clarify roles and responsibilities, and assign appropriate school staff to guide these partnerships, such as school-employed mental health professionals and principals.
  11. Safety Team should provide professional development for school staff and community partners addressing school climate and safety, positive behavior, and crisis prevention, preparedness, and response.
  12. Safety Team should engage students and families as partners in developing and implementing policies and practices that create and maintain a safe school environment.
  13. As Architects we can assist the “Safety Team” by utilizing strategies developed by Crime prevention through environmental design(CPTED), a multi-disciplinary approach to deterring criminal behavior through environmental design. CPTED strategies rely upon the ability to influence offender decisions that precede criminal acts. Generally speaking, most implementations of CPTED occur solely within the urbanized, built environment. Specifically altering the physical design of the communities in which humans reside and congregate in order to deter criminal activity is the main goal of CPTED. CPTED principles of design affect elements of the built environment ranging from the small-scale (such as the strategic use of shrubbery and other vegetation) to the overarching, including building form of an entire urban neighborhood and the amount of opportunity for “eyes on the street”.

ILMA Classroom 06.png
Image Source: School Security – Threat and Vulnerability Assessments

Sources:

The National Association of School Psychologists (NASP)

The National Association of School Psychologists (NASP) School Violence Prevention

The National Association of School Psychologists (NASP) Framework For Safe Schools

ILMA Classroom 10.pngILMA Classroom 09.pngILMA Classroom 08ILMA Classroom 07

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 

 

 

 

 

 

 


Conceptual Design – Adaptive Re-Use of Existing Cogeneration Plant

Project Information: Re-Use of Decommissioned Cogeneration Plant

My Role: University Facilities, University Architect

Architect of Record: Studio 200 Architecture

Landscape Architect: Melillo and Bauer Associates

Client: Montclair State University, University Facilities

About the Project:

Design collaboration with Landscape Architects, Melillo and Bauer Associates, for an adaptive reuse of a current building on campus overlooking the football stadium to be converted into an Alumni Center with stadium amenities and a Co-generation facility.

Project Status:

There are currently no plans to further develop this conceptual design.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook