Ask the Architect: What is Sustainability? #Green #Architect #ilmaBlog

What is sustainability?

Sustainability has become a “buzz” word which has been used to describe conservation and protection of the environment we live in. 

Due to the fact that the general public (through old and new media platforms) has become increasing knowledgeable about climate change and pollution (from print news articles, online websites, documentaries and films that focus on the wrongdoings of companies), they are holding companies accountable and voting amongst industry competitors with the dollars they spend on goods and services.  An Inconvenient Truth is a 2006 American concert film/documentary film directed by Davis Guggenheim about former United States Vice President Al Gore’s campaign to educate people about global warming. The film features a comprehensive slide show that, by Gore’s own estimate, he has presented over a thousand times to audiences worldwide.  Films like “An Inconvenient Truth” can shed light on the way that people and companies play a part in the world we live in.  Because we live in a world of limited resources it is important that we focus not only on ourselves, but the earth and all its eco-systems (plants and animals included, not just human beings).  Human beings have the greatest impact on the planet and need to be accountable for how we live our lives.  Companies and organizations need to do the same.

How can we make sustainable development a reality?

This response focuses on a world driven by economics: Impact from “Corporations” & “Organizations” are two of many ways to help materialize sustainability because they shape the lives we live through community, what we buy, where we learn, where we work and how we choose to spend our income.

The European Commission (2010) defines corporate social responsibility (CSR) as ‘‘a concept whereby companies integrate social and environmental concerns in their business operations and in their interaction with their stakeholders on a voluntary basis.’’ A common definition in the management literature comes from Davis (1973, p. 312), who defines CSR as ‘‘the firm’s considerations of, and response to, issues beyond the narrow economic, technical, and legal requirements of the firm to accomplish social [and environmental] benefits along with the traditional economic gains which the firm seeks (Source: The benefits and costs of corporate social Responsibility” by Geoffrey B. Sprinkle, Laureen A. Maines) .”

In creating and distributing CSR Reports, companies not only share their reports with their customers and their employees, but in the process, they are able to reflect on what they are doing and how they can make improvements.  In the words of W. Edwards Deming, “Measure of productivity does not lead to improvement in productivity.”  However, by recognizing attributes that make the organization unique help move it forward.  By identifying key metrics that impact the business the organization will be able to better address the financial, social, and environmental benefits, commonly referred to as the Triple Bottom Line.

Customers need to be aware of companies that may be using “greenwashing.”  There are times when organization may not want to directly promote their activities through advertisements because it may appear like “pinkwashing” or “greenwashing.”  Savy customers may be turned away by marketing tactics.  More important is to do the right thing, keep employees motivated and focused on the organization’s values, and report in their annual CSR report (Source: Marquis, Christopher, Pooja Mehta Shah, Amanda Elizabeth Tolleson, and Bobbi Thomason. “The Dannon Company: Marketing and Corporate Social Responsibility (A).” Harvard Business School Case 410-121, April 2010. (Revised September 2011)).

How sustainability can be measured?

Because I have focused the past 20 years of my career primarily in the higher education industry I will focus my response on what I know, instead of tackling this problem from a larger more global perspective like I have in the responses above.  However, it is with much thought and consideration that I share these insights because I strongly believe that other industry sectors can prosper from this information.  This is by no means an end to all measurements of sustainability but it certainly is a good start to put a dent in this massive undertaking!

For the past few years APPA/NACUBO has compiled a survey of institutions of higher education.

The National Association of College and University Business Officers (NACUBO) is a membership organization representing more than 1,900 colleges and universities across the country. (https://www.nacubo.org) APPA is the gathering place for educational facilities professionals, dedicated to the ongoing evolution of the profession.  Although their name has changed over the past 100 years their mission remains: “To support educational excellence with quality leadership and professional management through education, research and recognition (https://www.appa.org).”

APPA/NACUBO provides an annual survey on the self-reported information submitted by their constituents which is comprised of: (1) Community Colleges; (2) Small Institutions; (3) Comprehensive/Doctoral; and (4) Research Institutions (High and Very High Research Institutions). 

The following key performance indicators are measured, compiled and reported by APPA/NACUBO based on the one of 4 categories listed above:

  • Energy Use Intensity (measured KBTU per square foot)
  • Electrical (measured kW per square foot)
  • Water daily (measured average gallons per FTE student enrolled)
  • Recycled waste (measured in pounds annually per FTE student enrolled)
  • Garbage waste (measured in pounds annually per FTE student enrolled)
  • Carbon footprint (measured in metric tons CO2 per FTE student enrolled)

The report illustrates the year-over-year comparison of results from the survey, as well as comparisons by type of institution. APPA/NACUBO encourages the academic institutions of higher education to explore these findings as a starting point to better inform their campus decisions.

It is vital that each institution look at similar organizations (community colleges, small institutions, comprehensive/doctoral, and research universities). The survey reports raw data by gross square feet (GSF) and by student full-time equivalent (SFTE). The raw data can be used to evaluate and reduce consumption.

Further Reading:

https://www.nacubo.org/Topics/Facilities-and-Environmental-Compliance/Key-Facilities-Metrics-Survey

https://ilovemyarchitect.com/category/green/

https://www.researchgate.net/profile/Frank_Cunha/answers

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Ask the Architect: Why Does Indoor Air Quality Matter?#LEED #WELL #Health #Wellness #Safety #Architect #ilmaBlog

Simply put, indoor air quality matters because human beings are spending more and more time indoors. It is becoming more important than ever to make sure that the buildings that we design, construct and occupy are suitable and safe for the occupants. The following article will draw on both research and experience in the design and construction of high performance buildings to help elaborate on this simple response.

Interesting Facts To Consider About Indoor Air Quality:

  • Indoor air often contains 4X to 10X the amount of pollutants of outdoor air.
  • Many studies have linked exposure to small particles (PM 2.5—defined as airborne particles smaller than 2.5 microns) with heart attacks, cardiac arrhythmias, strokes, chronic obstructive pulmonary disease, worsened symptoms of asthma, and an increased risk of respiratory illness.
  • The World Health Organization says that particulate matter contributes to about 800,000 premature deaths each year, making it the 13th leading cause of death worldwide.

The built environment around us plays a fundamental role in our overall well-being, particularly the indoor spaces that we inhabit to live, work, learn, play and pray, since most of us spend about 90% of our time indoors.  The buildings that we as Architects design and construct have a distinctive capability to positively or negatively impact our health and wellbeing. The air that we breathe inside a building can have a greater consequence on our health.  Unfortunately, many contaminants are not visible in the air, so we might not know that they are there.  Inhaling air or poor quality can lead to a number of health conditions, including but not limited to:  allergies, respiratory disorders, headaches, sore throat, lethargy and nausea.

Sick Building Syndrome

According to the EPA, sick building syndrome (SBS) is used to describe a situation in which the occupants of a building experience acute health- or comfort-related effects that seem to be linked directly to the time spent in the building. No specific illness or cause can be identified. The complainants may be localized in a particular room or zone or may be widespread throughout the building.

LEED Requirements

As more buildings are LEED certified, here are some things to consider about your next project:

To contribute to the comfort and well-being of building occupants by establishing minimum standards for indoor air quality (IAQ) after construction and during occupancy, USGBC LEED v4 requires that the project meet one of the following:

  • Minimum indoor air quality performance: Option 1. ASHRAE Standard 62.1–2010 or Option 2. CEN Standards EN 15251–2007 and EN 13779–2007.
  • Indoor air quality assessment: Path 1 Option 1. Flush-out, or Path 2. Option 1. During occupancy, or Path 2. Option 2. Air testing – Note: these cannot be combined.

Occupants are increasingly paying more attention to the conditions of their work environment as it relates to health and wellness. This is especially the case for researchers and their lab environments. We see surging growth in universities adopting lab design programs such as Smart Labs which places an emphasis in the indoor environment quality of the lab and through certification programs as:

We need to have a real-time measurement of the all contaminants of inside air and match that with real time control of the outside air coming into the environment. Ideally, we need to design and build facilities that:

  • Bring in lots of outside air—but only exactly where and when we need it.
  • Measures and controls more than just temperature and CO2.
  • Displays the ventilation performance for the building’s occupants.

Health and Cognitive FunctionPerformance Enhancements

Cognitive functions encompass reasoning, memory, attention, and language and lead directly to the attainment of information and, thus, knowledge. United Technologies and The Harvard School of Public Health prepared a study that was designed to simulate indoor environmental quality conditions in green and conventional buildings and evaluate the impacts on an objective measure of human performance—cognitive function.  The findings of the report concluded that the impact of the indoor air quality on the productivity of the occupants which revealed the following benefits:

  • Lowering the levels of CO2 and VOCs resulted in their participants scoring 61% higher on cognitive function tests compared with those in conventional offices.
  • There was a 101% improvement on their cognitive function tests when the ventilation levels were doubled above the standard ASHRAE prescribed levels.
  • Information usage scores were 299% higher than conventional offices when the ventilation rates were doubled.

The conclusion of this study is very clear: verified ventilation performance will increase employee and student performance.

Sources & References:

Is Your Building Ventilated Like It’s 1978? By Tom Kolsun

USGBC V4 Requirements for indoor environmental quality

Further Reading:

EPA – An Office Building Occupants Guide to Indoor Air Quality

#IAQmatters

EPA – Indoor Air Quality

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

For More Questions and Answers please check out:
Architects @WJMArchitect And @FrankCunhaIII Respond to ILMA Fan’s Questions “ASK THE ARCHITECT”

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


New Campus Center at Springfield Technical Community College #UniversityArchitect #Rehabilitation #Community #College #Architecture #Transformation #ilmaBlog

All Photos: Chuck Choi

Combining historic preservation, adaptive reuse, and contemporary architecture, Springfield Technical Community College’s new Campus Center repurposes a 764-foot-long by 55-foot-wide warehouse building originally constructed between 1846 and 1864.

A major aspect of the Springfield, Massachusetts, University’s Campus Center is The Ira H. Rubenzahl Student Learning Commons. The Campus Center and Student Learning Commons consolidate academic services and student life activities under one roof. Corten steel canopies along the building’s facade distinguish new entrances into each hub.

Click Here to read the rest of the story.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Will Higher Education Look Like 5, 10 or 20 Years From Now? Some Ways Colleges Can Reinvent Themselves #iLMA #eMBA #Innovation #Technology #Planning #Design #HigherEducation #HigherEd2030 #University #Architect

Introduction

Change is a natural and expected part of running a successful organization. Whether big or small, strategic pivots need to be carefully planned and well-timed. But, how do you know when your organization is ready to evolve to its next phase? Anyone that listens, watches, or reads the news knows about the rising cost of higher education and the increasing debt that education is putting on students and alumni and their families.

At a time when education is most important to keep up with increasing technological changes, institutions need to pivot or face imminent doom in an ever increasing competitive environment. Competition can come from startups or external factors in the higher education market therefore it is increasingly necessary for institutions of higher learning to take a different approach to their business operations.

This post will focus on:

  • Current Trends
  • Demographic Shifts
  • Future of Higher Education (and impacts on University Facilities & Management)
    • Changing Assumptions
    • Implications for the Physical Campus
    • Changing Trajectory
    • More Trends in Higher Education (Towards 2030)
  • Driving Technologies
  • External Forces

Current Trends

  • Online education[i] has become an increasingly accepted option, especially when “stackable” into degrees.
  • Competency-based education lowers costs and reduces completion time for students.
  • Income Share Agreements[ii] help students reduce the risk associated with student loans.
  • Online Program Manager organizations benefit both universities and nontraditional, working-adult students.
  • Enterprise training companies are filling the skills gap by working directly with employers.
  • Pathway programs facilitate increasing transnational education[iii], which serves as an additional revenue stream for universities.

Demographic Shifts

According to data from the National Clearinghouse and the Department of Education[iv]:

  • The Average Age of a College/University Student Hovers Around Twenty-Seven (Though That Is Decreasing as The Economy Heats Up)
  • 38% of Students Who Enrolled In 2011 Transferred Credits Between Different Institutions At Least Once Within Six Years.
  • 38% of Students Are Enrolled Part-Time.
  • 64% of Students Are Working Either Full-Time or Part-Time.
  • 28% of Students Have Children of Their Own or Care For Dependent Family Members.
  • 32% of Students Are from Low-Income Families.
  • The Secondary Education Experience Has an Increasingly High Variation, Resulting In Students Whose Preparation For College-Level Work Varies Greatly.

Future of Higher Education (and impacts on University Facilities & Management)

The future of higher education depends on innovation. 

University leaders who would risk dual transformation are required to exercise full commitment to multiple, potentially conflicting visions of the future. They undoubtedly confront skepticism, resistance, and inertia, which may sway them from pursuing overdue reforms.[v]

Change is upon us.

“All universities are very much struggling to answer the question of: What does [digitization[vi]] mean, and as technology rapidly changes, how can we leverage it?” . . . . Colleges afraid of asking that question do so at their own peril.”[vii]

James Soto Antony, the director of the higher-education program at Harvard’s graduate school of education.

Changing Assumptions

Until recently the need for a physical campus was based on several assumptions:

  • Physical Class Time Was Required
  • Meaningful Exchanges Occurred Face to Face
  • The Value of an Institution Was Tied to a Specific Geography
  • Books Were on Paper
  • An Undergraduate Degree Required Eight Semesters
  • Research Required Specialized Locations
  • Interactions Among Students and Faculty Were Synchronous

Implications for the Physical Campus

  • Learning – Course by course, pedagogy is being rethought to exploit the flexibility and placelessness of digital formats while maximizing the value of class time.
  • Libraries – Libraries are finding the need to provide more usable space for students and faculty.  Whether engaged in study, research or course projects, the campus community continues to migrate back to the library.
  • Offices – While the rest of North America has moved to mobile devices and shared workspaces, academic organizations tend to be locked into the private, fixed office arrangement of an earlier era – little changed from a time without web browsers and cell phones. 
  • Digital Visible – From an institutional perspective, many of the implications of digital transformation are difficult to see, lost in a thicket of business issues presenting themselves with increasing urgency. 

Changing Trajectory

University presidents and provosts are always faced with the choice of staying the course or modifying the trajectory of their institutions.  Due to failing business models, rapidly evolving digital competition and declining public support, the stakes are rising.  All should be asking how they should think about the campus built for the 21st century.[viii]  J. Michael Haggans[ix] makes the following recommendations:

  • Build no net additional square feet
  • Upgrade the best; get rid of the rest
  • Manage space and time; rethink capacity
  • Right-size the whole
  • Take sustainable action
  • Make campus matter

More Trends in Higher Education (Towards 2030)

  • The Rise of The Mega-University[x]
  • ; Public Private Partnerships (P3’s) Procurement Procedures Will Become More Prevalent
  • More Colleges Will Adopt Test-Optional Admissions
  • Social Mobility Will Matter More in College Rankings
  • Urban Colleges Will Expand[xi] — But Carefully
  • Financial Crunches Will Force More Colleges to Merge
  • The Traditional Textbook Will Be Hard to Find; Free and Open Textbooks
  • More Unbundling and Micro-Credentials
  • Continued Focus on Accelerating Mobile Apps
  • Re-Imagining Physical Campus Space in Response to New Teaching Delivery Methods
  • Transforming the Campus into A Strategic Asset with Technology
  • Education Facilities Become Environmental Innovators
  • Ethics and Inclusion: Designing for The AI Future We Want to Live In
  • Visibility (Transparency) And Connectedness
  • Sustainability from Multiple Perspectives
  • Better Customer Experiences with The Digital Supply Chain
  • Individualized Learning Design, Personalized Adaptive Learning
  • Stackable Learning Accreditation
  • Increased Personalization: More Competency-Based Education They’ll Allow Students to Master A Skill or Competency at Their Own Pace.
  • Adaptation to Workplace Needs They’ll Adapt Coursework to Meet Employer Needs for Workforce Expertise
  • Greater Affordability and Accessibility They’ll Position Educational Programs to Support Greater Availability.
  • More Hybrid Degrees[xii]
  • More Certificates and Badges, For Example: Micro-Certificates, Offer Shorter, More Compact Programs to Provide Needed Knowledge and Skills Fast[xiii]
  • Increased Sustainable Facilities – Environmental Issues Will Become Even More Important Due to Regulations and Social Awareness; Reduced Energy Costs, Water Conservation, Less Waste
  • Health & Wellness – Physical, Spiritual and Metal Wellbeing
  • Diversity and Inclusion Will Increase
  • Rise of The Micro-Campus[xiv] And Shared Campuses[xv]
  • E-Advising to Help Students Graduate
  • Evidence-Based Pedagogy
  • The Decline of The Lone-Eagle Teaching Approach (More Collaboration)
  • Optimized Class Time (70% Online, 30% Face to Face)
  • Easier Educational Transitions
  • Fewer Large Lecture Classes
  • Increased Competency-Based and Prior-Learning Credits (Credit for Moocs or From “Real World” Experience)[xvi]
  • Data-Driven Instruction
  • Aggressive Pursuit of New Revenue
  • Online and Low-Residency Degrees at Flagships
  • Deliberate Innovation, Lifetime Education[xvii]
  • The Architecture of The Residential Campus Will Evolve to Support the Future.
  • Spaces Will Be Upgraded to Try to Keep Up with Changes That Would Build In Heavy Online Usage.
  • Spaces Will Be Transformed and Likely Resemble Large Centralized, Integrated Laboratory Type Spaces. 
  • Living-Learning Spaces in Combination Will Grow, But On Some Campuses, Perhaps Not In The Traditional Way That We Have Thought About Living-Learning To Date.

Driving Technologies:

  • Emerging Technologies – Such as Augmented Reality, Virtual Reality, And Artificial Intelligence – Will Eventually Shape What the Physical Campus Of The Future Will Look Like, But Not Replace It.[xviii]
  • Mobile Digital Transformation[xix]
  • Smart Buildings and Smart Cities[xx]
  • Internet of Things
  • Artificial Intelligence (AI), Including Natural Language Processing
  • Automation (Maintenance and Transportation Vehicles, Instructors, What Else?)
  • Virtual Experience Labs, Including: Augmented Reality, Virtual Reality Learning, And Robotic Telepresence 
  • More Technology Instruction and Curricula Will Feature Digital Tools and Media Even More Prominently
  • New Frontiers For E-Learning, For Example, Blurred Modalities (Expect Online and Traditional Face-To-Face Learning to Merge)[xxi]
  • Blending the Traditional; The Internet Will Play Bigger Role in Learning
  • Big Data: Colleges Will Hone Data Use to Improve Outcomes

External Forces:

  • [xxii]: Corporate Learning Is A Freshly Lucrative Market
  • Students and Families Will Focus More on College Return On Investment, Affordability And Student Loan Debt
  • [xxiii]
  • Greater Accountability; Schools will be more accountable to students and graduates
  • Labor Market Shifts and the Rise of Automation
  • Economic Shifts and Moves Toward Emerging Markets
  • Growing Disconnect Between Employer Demands and College Experience 
  • The Growth in Urbanization and A Shift Toward Cities 
  • Restricted Immigration Policies and Student Mobility
  • Lack of Supply but Growth in Demand
  • The Rise in Non-Traditional Students 
  • Dwindling Budgets for Institutions[xxiv]
  • Complex Thinking Required Will Seek to Be Vehicles of Societal Transformation, Preparing Students to Solve Complex Global Issues

Sources & References:


[i] Online education is a flexible instructional delivery system that encompasses any kind of learning that takes place via the Internet. The quantity of distance learning and online degrees in most disciplines is large and increasing rapidly.

[ii] An Income Share Agreement (or ISA) is a financial structure in which an individual or organization provides something of value (often a fixed amount of money) to a recipient who, in exchange, agrees to pay back a percentage of their income for a fixed number of years.

[iii] Transnational education (TNE) is education delivered in a country other than the country in which the awarding institution is based, i.e., students based in country Y studying for a degree from a university in country Z.

[iv] Article accessed on April 16, 2019: https://er.educause.edu/articles/2019/3/changing-demographics-and-digital-transformation

[v]Article accessed on April 16, 2019: https://ssir.org/articles/entry/design_thinking_for_higher_education

[vi] Digitization is the process of changing from analog to digital form.

[vii] Article accessed on April 16, 2019:  https://qz.com/1070119/the-future-of-the-university-is-in-the-air-and-in-the-cloud

[viii] Article accessed on April 16, 2019: http://c21u.gatech.edu/blog/future-campus-digital-world

[ix] Michael Haggans is a Visiting Scholar in the College of Design at the University of Minnesota and Visiting Professor in the Center for 21st Century Universities at Georgia Institute of Technology.  He is a licensed architect with a Masters of Architecture from the State University of New York at Buffalo.  He has led architectural practices serving campuses in the US and Canada, and was University Architect for the University of Missouri System and University of Arizona.

[x] Article accessed on April 16, 2019:  https://www.chronicle.com/interactives/Trend19-MegaU-Main

[xi] Article accessed on April 16, 2019:  https://www.lincolninst.edu/sites/default/files/pubfiles/1285_wiewel_final.pdf

[xii] Article accessed on April 16, 2019: https://www.fastcompany.com/3046299/this-is-the-future-of-college

[xiii] Article accessed on April 16, 2019: https://www.govtech.com/education/higher-ed/Why-Micro-Credentials-Universities.html

[xiv] Article accessed on April 16, 2019: https://global.arizona.edu/micro-campus

[xv] Article accessed on April 16, 2019: https://evolllution.com/revenue-streams/global_learning/a-new-global-model-the-micro-campus

[xvi] Article accessed on April 16, 2019:  https://www.chronicle.com/article/The-Future-Is-Now-15/140479

[xvii] Article accessed on April 16, 2019:  https://evolllution.com/revenue-streams/market_opportunities/looking-to-2040-anticipating-the-future-of-higher-education

[xviii] Article accessed on April 16, 2019: https://www.eypae.com/publication/2017/future-college-campus

[xix] Article accessed on April 16, 2019: https://edtechmagazine.com/higher/article/2019/02/digital-transformation-quest-rethink-campus-operations

[xx] Article accessed on April 16, 2019: https://ilovemyarchitect.com/?s=smart+buildings

[xxi] Article accessed on April 16, 2019: https://www.theatlantic.com/education/archive/2018/04/college-online-degree-blended-learning/557642

[xxii] Article accessed on April 16, 2019: https://qz.com/1191619/amazon-is-becoming-its-own-university

[xxiii] Article accessed on April 16, 2019: https://www.fastcompany.com/3029109/5-bold-predictions-for-the-future-of-higher-education

[xxiv] Article accessed on April 16, 2019: https://www.acenet.edu/the-presidency/columns-and-features/Pages/state-funding-a-race-to-the-bottom.aspx

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


AIA/ALA’s 2019 Library Building Awards Includes 2 Higher Education Projects #HigherEd #University#Architect #Design #Libraries #CampusPlanning #University #Architect #ilmaBlog

Every year, the AIA is proud to partner with the American Library Association / Library Leadership and Management Association to honor the best in library architecture and design.

The AIA/ALA Library Building Award is the only award that recognizes entire library structures and all aspects of their design.

This year’s award includes two college/university libraries:

Barnard College – The Milstein Center

Architect: Skidmore, Owings & Merrill LLP (SOM)

Owner: Barnard College

Location: New York

Colorado College Tutt Library Expansion and Transformation

Architect: Pfeiffer

Owner: Colorado College

Location: Colorado Springs, Colorado

Click here to see all the award winners.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


New Jersey Higher Education Partnership for Sustainability Point of Intervention Tour

The Point of Intervention Tour (POI) hosted by the Post-Landfill Action Network (PLAN) is challenging our consumption economy and spreading the message that “Nobody Can Do Everything, But Everybody Can Do Something.” Learn more about the Post Landfill Action Network’s Point of Intervention at several upcoming campus events.

POI will be visiting Montclair State University (Friday, April 12th),Ramapo College (Monday April 15), and Kean

University (Tuesday April 16). At these locations, you’ll find zero-waste workshops and educational presentations about how to get involved in the zero-waste campaign.  

Montclair State University’s 2019 Earth Day event, themed “Passport to Sustainability,” is partnered with the New Jersey Higher Education Partnership for Sustainability (NJHEPS) and PSEG Institute for Sustainability Studies (PSEGISS). This event is aimed to inspire a student led zero-waste movement and collectively realize individual skills in order to solve our Linear Consumption Economy issue. During the event we will celebrate Earth Day with a fair involving campus-wide clubs, organizations and departments, educational workshops and guest speakers.
Together we can take action on the waste issue with sustainable, replicable initiatives!

These events are free and open to the public.
When and Where:

  • April 12, 2019 – Montclair State University
  • April 15, 2019 – Ramapo College of New Jersey
  • April 16, 2019 – Kean University

Help share the word by forwarding this email to others who may be interested in this engaging event.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What About Public Private Partnerships? #ilmaBlog #HigherEducation #P3 #PPP #University #Architect

Example of Stakeholder Team (Source: Servitas)

Background on Public Private Partnerships (P3’s):

Many institutions of higher education are facing mounting pressure on their mission to deliver high-quality, affordable education to students and perform world-class research. Reductions in public funding support and concerns about overall affordability present substantial near-term and longer-term budget challenges for many institutions.

Public institutions are predominantly affected, having been constrained by suspensions or reductions in state funding. State appropriations across the US grew by just 0.5% annually between 2005 and 2015. State funding has still not recovered to 2008 levels, the last year in which state funding decisions would not have been affected by the Great Recession.

(Source: Integrated Postsecondary Education Data System (IPEDS) — state appropriations revenue divided by total fall enrollment, 2005–15)

Public-private partnership models are continuing to proliferate as cash-strapped colleges and universities seek to replace or update aging and outdated infrastructure amid tight finances.

(Source: Proliferating Partnerships)

What is the P3 Delivery Model?

A public-private partnership, or P3, is long-term agreement between a public entity and a private industry team that is tasked with designing, building, financing, operating and maintaining a public facility. The past decade has seen a steady increase in the use of P3 structures, both inside and outside higher education. In 2016, something of a watershed year for P3, multiple high-profile projects came online in response to a variety of public needs, including a $1-billion-plus water infrastructure project servicing San Antonio, and a $300-million-plus renovation of the Denver International Airport’s Great Hall.

(Source: A Few Lessons About Public-Private Partnerships)

“Public” is a non-profit institutional or governmental entity that engages a “private” for-profit entity to pay for a particular project.

The “private” partner provides funding (and often expertise) to deliver (and often operate) the project used by the “public” entity to meet its purposes.

In return for its capital, the “private” entity gets a revenue flow from the asset it has paid for.

(Source: Should your University enter into a Public/Private Partnership – the Pro’s and Con’s)

The emergence of the P3 option is happening where it matters most: projects that would be otherwise unattainable under the traditional public-improvement delivery models. For instance, 10 years ago, only a handful of higher education P3 projects were up and running; today, we are approaching three dozen such projects.

The biggest challenge is, of course, the financing component, but P3 teams bring much more to the table than money — they give public entities access to expertise and innovation that can add significant value to projects at each phase of development.

(Source: A Few Lessons About Public-Private Partnerships)

Motivations for P3 transactions vary widely, but include:

  • Supplementing traditional debt instruments. These include private capital, using off balance sheet or alternative mechanisms.
  • Transfer of risk. Historically, universities have born all or most of the risk of facilities-related projects themselves. A P3 is a way to either transfer or at least share the risk.
  • Speed and efficiency. A P3 allows for a faster development process, and time to completion is generally shorter and on schedule. The sole focus of the private entity is to complete the project on budget and on time. University infrastructure tends to have competing priorities across all-campus facility needs.
  • Outsourcing provision of non-core assets. Outsourcing allows institutions to focus investment of internal resources and capabilities on those functions that are closer to the academic needs of its students.
  • Experience. Private partners often have much more experience and skills in a particular development area (e.g., facility architecture and infrastructure, student housing needs) and are able to better accommodate the needs of students, faculty, administrators, etc.
  • Planning and budgeting. Private partners offer experience and know-how in long-term maintenance planning and whole life cycle budgeting.

(Source: Public-private partnerships in higher education What is right for your institution?)

The four types of P3s:

  • Operating contract/management agreement. Short- to medium-term contract with private firm for operating services
  • Ground lease/facility lease. Long-term lease with private developer who commits to construct, operate and maintain the project
  • Availability payment concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for annual payments subject to abatement for nonperformance
  • Demand-risk concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for rights to collect revenues related to the project

Pro’s and Con’s of P3’s:

Since their emergence in student housing several years ago, P3s have become important strategies for higher education institutions because of the many benefits they offer, including:

  • Lower developer costs
  • Developer expertise
  • Operational expertise
  • Access to capital
  • Preservation of debt capacity
  • More favorable balance sheets and credit statements
  • Risk mitigation
  • Faster procurement and project delivery (It can typically take a university about 5 years to get a project built. With a P3, that process can be reduced to just 2 years. Additionally, P3s can save approximately 25% in costs compared to typical projects.)

Beyond the above, the indirect advantages of P3s in student housing are numerous, such as they:

  • Provide better housing for students
  • Expand campus capacity
  • Create high-quality facilities
  • Expand the tax base for both a city and county
  • Provide an economic boost to surrounding areas, which likely lead to private growth and other improvements

It is important to note that, while there are many benefits of P3s for higher education institutions, these agreements also have disadvantages that need to be considered, including:

  • High cost of capital
  • Reduced control for the university
  • Complexity of deals
  • Multi-party roles and responsibilities
  • Limitation on future university development

(Source: Student Housing A Hot Sector For Public-Private Partnerships)

A LOOK AHEAD

Where Are We Heading?

  • More political involvement and pressure to consider P3
  • Pre-development Risks – Many projects failing to close
  • Issues with Construction Pricing & Labor Shortages
  • An increasing number of developers are getting in the on-campus business; however, developers are being more strategic on which projects/procurements to respond to
  • Exploration of other sources of funds like tax credits, USDA, and opportunity zones
  • Shared governance continues to grow
  • Larger, more complex P3 projects including long term concessions, availability payment models, Key Performance Indicators (KPIs)
  • Bundling of Procurements (food, housing (including faculty), academic buildings, hotel, energy, facility maintenance, etc.)

Further Reading:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook