Ask the Architect: Why Does Indoor Air Quality Matter?#LEED #WELL #Health #Wellness #Safety #Architect #ilmaBlog

Simply put, indoor air quality matters because human beings are spending more and more time indoors. It is becoming more important than ever to make sure that the buildings that we design, construct and occupy are suitable and safe for the occupants. The following article will draw on both research and experience in the design and construction of high performance buildings to help elaborate on this simple response.

Interesting Facts To Consider About Indoor Air Quality:

  • Indoor air often contains 4X to 10X the amount of pollutants of outdoor air.
  • Many studies have linked exposure to small particles (PM 2.5—defined as airborne particles smaller than 2.5 microns) with heart attacks, cardiac arrhythmias, strokes, chronic obstructive pulmonary disease, worsened symptoms of asthma, and an increased risk of respiratory illness.
  • The World Health Organization says that particulate matter contributes to about 800,000 premature deaths each year, making it the 13th leading cause of death worldwide.

The built environment around us plays a fundamental role in our overall well-being, particularly the indoor spaces that we inhabit to live, work, learn, play and pray, since most of us spend about 90% of our time indoors.  The buildings that we as Architects design and construct have a distinctive capability to positively or negatively impact our health and wellbeing. The air that we breathe inside a building can have a greater consequence on our health.  Unfortunately, many contaminants are not visible in the air, so we might not know that they are there.  Inhaling air or poor quality can lead to a number of health conditions, including but not limited to:  allergies, respiratory disorders, headaches, sore throat, lethargy and nausea.

Sick Building Syndrome

According to the EPA, sick building syndrome (SBS) is used to describe a situation in which the occupants of a building experience acute health- or comfort-related effects that seem to be linked directly to the time spent in the building. No specific illness or cause can be identified. The complainants may be localized in a particular room or zone or may be widespread throughout the building.

LEED Requirements

As more buildings are LEED certified, here are some things to consider about your next project:

To contribute to the comfort and well-being of building occupants by establishing minimum standards for indoor air quality (IAQ) after construction and during occupancy, USGBC LEED v4 requires that the project meet one of the following:

  • Minimum indoor air quality performance: Option 1. ASHRAE Standard 62.1–2010 or Option 2. CEN Standards EN 15251–2007 and EN 13779–2007.
  • Indoor air quality assessment: Path 1 Option 1. Flush-out, or Path 2. Option 1. During occupancy, or Path 2. Option 2. Air testing – Note: these cannot be combined.

Occupants are increasingly paying more attention to the conditions of their work environment as it relates to health and wellness. This is especially the case for researchers and their lab environments. We see surging growth in universities adopting lab design programs such as Smart Labs which places an emphasis in the indoor environment quality of the lab and through certification programs as:

We need to have a real-time measurement of the all contaminants of inside air and match that with real time control of the outside air coming into the environment. Ideally, we need to design and build facilities that:

  • Bring in lots of outside air—but only exactly where and when we need it.
  • Measures and controls more than just temperature and CO2.
  • Displays the ventilation performance for the building’s occupants.

Health and Cognitive FunctionPerformance Enhancements

Cognitive functions encompass reasoning, memory, attention, and language and lead directly to the attainment of information and, thus, knowledge. United Technologies and The Harvard School of Public Health prepared a study that was designed to simulate indoor environmental quality conditions in green and conventional buildings and evaluate the impacts on an objective measure of human performance—cognitive function.  The findings of the report concluded that the impact of the indoor air quality on the productivity of the occupants which revealed the following benefits:

  • Lowering the levels of CO2 and VOCs resulted in their participants scoring 61% higher on cognitive function tests compared with those in conventional offices.
  • There was a 101% improvement on their cognitive function tests when the ventilation levels were doubled above the standard ASHRAE prescribed levels.
  • Information usage scores were 299% higher than conventional offices when the ventilation rates were doubled.

The conclusion of this study is very clear: verified ventilation performance will increase employee and student performance.

Sources & References:

Is Your Building Ventilated Like It’s 1978? By Tom Kolsun

USGBC V4 Requirements for indoor environmental quality

Further Reading:

EPA – An Office Building Occupants Guide to Indoor Air Quality

#IAQmatters

EPA – Indoor Air Quality

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

For More Questions and Answers please check out:
Architects @WJMArchitect And @FrankCunhaIII Respond to ILMA Fan’s Questions “ASK THE ARCHITECT”

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


WELL Communities: Health & Wellness Lifestyle

Architects need to continue to consider healthy living when designing private and public spaces.  According to the sources cited below, the Well Living Lab aims to answer critical questions to make homes, offices and independent living environments healthier places. That means indoor environments could be altered to reduce stress and increase comfort, performance and sleep.

By understanding the interplay of elements such as sound, lighting, temperature and air quality, indoor spaces may be altered to address people’s specific and overall health needs. And by understanding how people’s behavior is shaped by their physical environment, facilities can be designed to maximize positive health habits and reduce negative influences. This ambitious three-year research plan is the start toward transforming human health and well-being in indoor environments.

(Source: http://welllivinglab.com)

Well-1

What is a WELL Community?

WELL community functions to protect health and well-being across all aspects of community life. The vision for a WELL community is inclusive, integrated, and resilient, fostering high levels of social engagement.

Air

Facilitates ambient air quality with strategies to reduce traffic pollution and reduce exposure to pollution.

Water

Encourages drinking water quality, public sanitation, and facilities provisions with strategies managing contaminated water on a systems scale and strategies to promote drinking water access.

Nourishment

Facilitates fruit and vegetable access, availability and affordability with policies to reduce the availability of processed foods and providing nutritional information and nutrition education. Also includes strategies for food advertising and promotion, food security, food safety and breastfeeding support.

Light

Supports maintained illuminance levels for roads and walkways and strategies for limiting light pollution, light trespass, glare and discomfort avoidance.

Fitness

Integrates environmental design and operational strategies to reduce the risk of transportation-related injuries, mixed land use and connectivity, walkability, cyclist infrastructure, infrastructure to encourage active transportation and strategies to promote daily physical activity and exercise.

Temperature

Facilitates strategies to reduce heat island effect with policies to deal with extreme temperatures and manage sun exposure and ultraviolet risk.

Sound

Facilitates noise exposure assessment with planning for acoustics, techniques to reduce sound propagation and hearing health education.

Materials

Supports strategies to reduce exposure to hazardous chemical substances in cases of uncontrolled/accidental release and contaminated sites and to limit use of hazardous chemicals in landscaping and outdoor structures.

Mind

Provides access to mental health care, substance abuse and addiction services and access to green spaces.

Community

Supports health impact assessments, policies that address the social determinants of health, health promotion programming, policies that foster social cohesion, community identity and empowerment, crime prevention through environmental design, policies and planning for community disaster and emergency preparedness.

(Source: https://www.wellcertified.com)

Further Reading: You Know LEED, But Do You Know WELL?

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


You Know LEED, But Do You Know WELL?

Greetings,

The following is a quick recap of the LEED rating system; below is information about the WELL rating information.

What is LEED?

LEED, or Leadership in Energy and Environmental Design, is the most widely used green building rating system in the world. Available for virtually all building, community and home project types, LEED provides a framework to create healthy, highly efficient and cost-saving green buildings. LEED certification is a globally recognized symbol of sustainability achievement.

  • 2.2 million + square feet is LEED certified every day with more than 92,000 projects using LEED.
  • Flexible. LEED works for all building types anywhere. LEED is in over 165 countries and territories.
  • Sustainable. LEED buildings save energy, water, resources, generate less waste and support human health.
  • ValueLEED buildings attract tenants, cost less to operate and boost employee productivity and retention.

This slideshow requires JavaScript.

WHAT IS WELL?

The WELL Building Standard® is a performance-based system for measuring, certifying, and monitoring features of the built environment that impact human health and wellbeing, through air, water, nourishment, light, fitness, comfort, and mind.

WELL is managed and administered by the International WELL Building Institute (IWBI), a public benefit corporation whose mission is to improve human health and wellbeing through the built environment.

WELL is grounded in a body of medical research that explores the connection between the buildings where we spend more than 90 percent of our time, and the health and wellness of its occupants. WELL Certified™ spaces and WELL Compliant™ core and shell developments can help create a built environment that improves the nutrition, fitness, mood, and sleep patterns.

The WELL Building Standard® is third-party certified by the Green Business Certification Incorporation (GBCI), which administers the LEED certification program and the LEED professional credentialing program.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


A well documented set of construction drawings NOW decreases additional “hidden” construction costs LATER! by @WJMArchitect

By Bill Martin

A well documented project drawing set has a big impact on construction cost.

Less detail in the plan means more extra cost during the construction.

A well documented project gives the client maximum negotiating leverage with contractors during competitive bidding, this saves much more than the cost of the architects fee, reducing the total construction cost by thousands.

Listing out all of the fees and expenses and pushing to minimize each expense will not result in the lowest possible total cost.

There is an inverse relationship between construction cost and architects fee.

A well documented project drawing set may require more for an architects fee, but has a big impact on reducing total construction cost.

Learn more by clicking Bill’s website: WJM Architect

 

WJM PICT0008C

Also Check Out:

We would love to hear from you on what you think about this post.  We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


@DWELL’s WOMEN OF INFLUENCE

DWELL identify a cross-section of designers hard at work in every corner of society, from a Taiwanese graphic designer working in the New York headquarters of Pentagram, to the first female architect in Pakistan, to three trailblazers at MIT. Across their varied disciplines, these 15 thinkers, planners, and makers define today’s creative economy.

Read more: http://www.dwell.com/articles/women-of-influence-design-portfolio.html#ixzz20voYBnmJ

We would love to hear from you on what you think about this post.  We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


The @FelicianoCenter’s @MIXLabDesign Design Charrette for “B.E.L.A.” Summer High School Program Entailing the Redevelopment of a Significant Urban Historic Site #UrbanPlanning #Redevelopment #Business #Entrepreneur #Education #HighSchool #DesignThink #Innovation #NJEd @MontclairStateU

On July 9, 2019, in the capacity of University Architect at Montclair State University (and Alumni of the Feliciano School of Business). I had the privilege of participating in a design charrette with a local high school. The project consists of an urban redevelopment site with a precious historical building at the site. I was invited by the people who run the Montclair State University MIX Lab (Feliciano Center for Entrepreneurship), an interdisciplinary hub for transformative innovation, and digitally mediated making.

M.I.X. stands for Making and Innovating for X, where X is the unknown, that which exceeds our grasp, the future, and the open-ended nature of creativity, good design and big problems. The co-directors of MIX Lab are Iain Kerr, associate professor of Innovation Design, and Jason Frasca, entrepreneurship instructor.

I graciously accepted Jason and Ian’s invitation to participate as a guest critic along with another fellow professional, Frank Gerard Godlewski of Fellsbridge Studio LLC, who specializes in historic preservation in the area where the redevelopment project is located.  The format for the design charrette, hosted by the MIX Lab for the high school program led by high school teacher, Kevin Richburg, included: (1) The students, in groups of 4-5, presented their concepts for the redevelopment of the site (there were 5 teams); (2) the guest critics gave suggestions and further thoughts on how to further explore and develop the student’s ideas; (3) the guest critics summed up their thoughts for all the students with key take-aways.  The following is a recap of what I learned from the students (in so far as what is the most significant to them) and the key take-aways I offered the students (in no particular order of importance) from my perspective as an Architect who has been involved in the planning, design and construction of projects over the past 20-years.

What the Student Teams Focused on as Key Ideas for their Projects:

  • Historic preservation of the existing building
  • Connecting with local community
  • Local and state pride
  • Affordability
  • Sustainability
  • Celebration of diversity and inclusion
  • Love of the arts
  • Focus on the user “experience”
  • Spaces for families to enjoy
  • Entertainment
  • Accessibility to quality food and goods
  • Mixing of “Bright and Bold” historic and modern elements
  • Transformative
  • “Modern” vibe

Proposed Amenities of the Re-Development Site:

  • Supermarkets (one group proposed a two-story whole sale supermarket)
  • Open-air markets (farmer markets, etc.)
  • Retail, restaurants, food trucks
  • Open space, a square or plaza
  • Parking for visitors (possible tunnel or bridge)
  • Parking at perimeter

Types of Buildings (Programmed Spaces)

  • Main historic building’s exterior appearance
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail

Types of Exterior Spaces

  • Open spaces with green lawns and fountains
  • Places to reflect and remember
  • ·Field with stage and seating
  • Outdoor seating for restaurants
  • Areas to relax

Key Take-Aways & Ideas for Further Exploration:

  • Site plans – Delineate site elements separately from building elements (so easier to comprehend) using color or graphics (Example)
  • Floor plans – Delineate building areas/rooms with designated color so it is easier to understand program of spaces (i.e., circulation vs apartments vs retail vs support spaces, etc.) (Example)
  • Work together as a team – commemorate each other’s strengths but give everyone credit even those whose work may be behind the scenes
  • Focus on one main idea (let other ideas support the one main theme)
  • Context and Scale – Observe and learn from the surrounding community; apply those elements to the proposed project so that it complements the adjoining communities
  • Materials – Understand how the new materials can complement the historic ones (let the original historic building stand on its own and celebrate its historical significance)
  • Consider “big box” retail versus the Local “pop ups” (gentrification good and bad)
  • Parking/Transportation – As mass transportation has changed from ships to locomotives to buses and cars; look to the future as the world heads to autonomous vehicles (particularly China).  If parking is required think about how a parking lot or parking garage can be transformed in the future.  Example
  • Sustainability is important but do not forget to consider W.E.L.L. as well.  LEED/Sustainability concepts Resource 1 ; Resource 2 also check out the following link for ides about other program types for the redevelopment project Resource 3
  • Consider more technology in your projects, for instance: Smart CitiesAR/VR, and other innovate concepts, like: Immersive Experience and Virtual reality in theme park attractions. Also consider utilizing QR Codes as a teaching tool.
  • Consider developing a pedestrian mall by converting an existing street into a pedestrian friendly zone like they have done in Jersey City, NJ or Times Square, New York City, NY or Fremont Street Experience in Downtown Las Vegas, NV, the taking cars, trucks and buses off the street and giving the spaces back to the pedestrians who can enjoy it (also it would make the entire site one big site instead of two separate parcels dived by thru traffic).
  • Lastly, and not least important, when considering injecting modern elements with historic architecture, it must be considered whether the original is to remain intact or be altered.  There are interesting examples of tasteful alterations, however, the older I get the less comfortable I am with injecting new with old for the sake of “shock” value (where as a student of architecture 20 years ago the concept was more appealing).  I reminded the students of Notre Dame Cathedral in Paris, France, and the ensuing debate that is going on whether or not the renovations/upgrades should be true to the original or whether the new design should be bold and innovating and perhaps less true to the original.  Whether the designers choose to go in one direction or another much thought should be given to preserving the historical elements of our precious structures because they are irreplaceable (think Grand Central Station in New York City, NY, which acted as a catalyst for the preservation movement).  Click here to read about the history of the Preservation Battle of Grand Central Station.

Overall, I was impressed by the talent and creativity of all the students and I was pleased with the quality of their presentations. I hope I was able to contribute in some small way to the success of their respective projects.  The high school student participants’ contributions to the build environment would be welcomed by the design and construction industry, since the students are willing to understand and develop their skills in the area of deep thought, innovation, design, construction and socio-economic concepts at an early age.  I gladly encouraged each and every one of them by letting them know that if they choose a career in architecture, engineering, real-estate development, construction or related field that they would certainly all be able to achieve their goals based on their willingness and eagerness to learn and present their visions and concepts.   I hope my involvement was as rewarding for the students as it was for me.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Ask the Architect: What is Sustainability? #Green #Architect #ilmaBlog

What is sustainability?

Sustainability has become a “buzz” word which has been used to describe conservation and protection of the environment we live in. 

Due to the fact that the general public (through old and new media platforms) has become increasing knowledgeable about climate change and pollution (from print news articles, online websites, documentaries and films that focus on the wrongdoings of companies), they are holding companies accountable and voting amongst industry competitors with the dollars they spend on goods and services.  An Inconvenient Truth is a 2006 American concert film/documentary film directed by Davis Guggenheim about former United States Vice President Al Gore’s campaign to educate people about global warming. The film features a comprehensive slide show that, by Gore’s own estimate, he has presented over a thousand times to audiences worldwide.  Films like “An Inconvenient Truth” can shed light on the way that people and companies play a part in the world we live in.  Because we live in a world of limited resources it is important that we focus not only on ourselves, but the earth and all its eco-systems (plants and animals included, not just human beings).  Human beings have the greatest impact on the planet and need to be accountable for how we live our lives.  Companies and organizations need to do the same.

How can we make sustainable development a reality?

This response focuses on a world driven by economics: Impact from “Corporations” & “Organizations” are two of many ways to help materialize sustainability because they shape the lives we live through community, what we buy, where we learn, where we work and how we choose to spend our income.

The European Commission (2010) defines corporate social responsibility (CSR) as ‘‘a concept whereby companies integrate social and environmental concerns in their business operations and in their interaction with their stakeholders on a voluntary basis.’’ A common definition in the management literature comes from Davis (1973, p. 312), who defines CSR as ‘‘the firm’s considerations of, and response to, issues beyond the narrow economic, technical, and legal requirements of the firm to accomplish social [and environmental] benefits along with the traditional economic gains which the firm seeks (Source: The benefits and costs of corporate social Responsibility” by Geoffrey B. Sprinkle, Laureen A. Maines) .”

In creating and distributing CSR Reports, companies not only share their reports with their customers and their employees, but in the process, they are able to reflect on what they are doing and how they can make improvements.  In the words of W. Edwards Deming, “Measure of productivity does not lead to improvement in productivity.”  However, by recognizing attributes that make the organization unique help move it forward.  By identifying key metrics that impact the business the organization will be able to better address the financial, social, and environmental benefits, commonly referred to as the Triple Bottom Line.

Customers need to be aware of companies that may be using “greenwashing.”  There are times when organization may not want to directly promote their activities through advertisements because it may appear like “pinkwashing” or “greenwashing.”  Savy customers may be turned away by marketing tactics.  More important is to do the right thing, keep employees motivated and focused on the organization’s values, and report in their annual CSR report (Source: Marquis, Christopher, Pooja Mehta Shah, Amanda Elizabeth Tolleson, and Bobbi Thomason. “The Dannon Company: Marketing and Corporate Social Responsibility (A).” Harvard Business School Case 410-121, April 2010. (Revised September 2011)).

How sustainability can be measured?

Because I have focused the past 20 years of my career primarily in the higher education industry I will focus my response on what I know, instead of tackling this problem from a larger more global perspective like I have in the responses above.  However, it is with much thought and consideration that I share these insights because I strongly believe that other industry sectors can prosper from this information.  This is by no means an end to all measurements of sustainability but it certainly is a good start to put a dent in this massive undertaking!

For the past few years APPA/NACUBO has compiled a survey of institutions of higher education.

The National Association of College and University Business Officers (NACUBO) is a membership organization representing more than 1,900 colleges and universities across the country. (https://www.nacubo.org) APPA is the gathering place for educational facilities professionals, dedicated to the ongoing evolution of the profession.  Although their name has changed over the past 100 years their mission remains: “To support educational excellence with quality leadership and professional management through education, research and recognition (https://www.appa.org).”

APPA/NACUBO provides an annual survey on the self-reported information submitted by their constituents which is comprised of: (1) Community Colleges; (2) Small Institutions; (3) Comprehensive/Doctoral; and (4) Research Institutions (High and Very High Research Institutions). 

The following key performance indicators are measured, compiled and reported by APPA/NACUBO based on the one of 4 categories listed above:

  • Energy Use Intensity (measured KBTU per square foot)
  • Electrical (measured kW per square foot)
  • Water daily (measured average gallons per FTE student enrolled)
  • Recycled waste (measured in pounds annually per FTE student enrolled)
  • Garbage waste (measured in pounds annually per FTE student enrolled)
  • Carbon footprint (measured in metric tons CO2 per FTE student enrolled)

The report illustrates the year-over-year comparison of results from the survey, as well as comparisons by type of institution. APPA/NACUBO encourages the academic institutions of higher education to explore these findings as a starting point to better inform their campus decisions.

It is vital that each institution look at similar organizations (community colleges, small institutions, comprehensive/doctoral, and research universities). The survey reports raw data by gross square feet (GSF) and by student full-time equivalent (SFTE). The raw data can be used to evaluate and reduce consumption.

Further Reading:

https://www.nacubo.org/Topics/Facilities-and-Environmental-Compliance/Key-Facilities-Metrics-Survey

https://ilovemyarchitect.com/category/green/

https://www.researchgate.net/profile/Frank_Cunha/answers

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


CELS Earns Honorable Mention Among @USGBCNJ Gala Award Winners – 2019

NEWS – The U.S. Green Building Council New Jersey Chapter (USGBC NJ) celebrated nine New Jersey-based projects at its Annual Awards Gala. The Gala took place on Wednesday, May 22, 2019 at the LEED registered Hyatt Regency, New Brunswick, NJ.

Each year, USGBC NJ recognizes and presents these distinguished awards to companies and individuals that have demonstrated outstanding achievement and best practices in green building and sustainability.

“The Annual Awards Gala is a stellar event,” said USGBC NJ Board Chair Daniel Topping, Principal with NK Architects. “It is our opportunity to celebrate innovative green New Jersey projects, while networking and financially supporting the mission of USGBC NJ. This year’s winners are exciting and inspiring. They range from corporate campuses, higher education facilities, sustainably built residential projects, a comprehensive green cleaning initiative and an urban resiliency park.”

This year, USGBC NJ’s Gala celebrated the following Award Winners (click for list of winners).

Honorable Mention

Included as an honorable mention was the Center for Environmental and Life Sciences (CELS) facility, a 107,500 square foot, LEED® Gold–certified science facility devoted to environmental and pharmaceutical life sciences research.  CELS enables Montclair State University’s College of Science and Mathematics (CSAM) to build on its collaborative culture combining strengths across disciplines and building research programs of exceptional power. In the process, Montclair State University demonstrates that it can make a large impact on the advancement of science and technology, especially in the sustainable use of natural resources and improved human health. The building comprises of a comprehensive array of laboratories, seminar rooms, classrooms, and other facilities that enable collaborative transdisciplinary research in the pharmaceutical life sciences and environmental sciences. It joins three existing science buildings around a “learning and discovery landscape” to give science research a high-visibility position on the campus.

The Project Team

  • Montclair State University Project Manager: Frank Cunha III, AIA
  • Architect of Record: The S/L/A/M Collaborative, Inc.
  • Engineer of Record: Vanderweil Engineers
  • Contractor: Terminal Construction Corporation
  • LEED Consultant: Green Building Center – New Jersey
  • Commissioning Agent: NORESCO

Some of the LEED-specific features include:

  • Both bus and rail transportation options within a half-mile walking distance.
  • The building is situated on an area that was previously developed.
  • The site is near to basic services such as places of worship, a convenience store, day care center, library, park, police department, school, restaurants, theaters, community center, fitness center, and museums.
  • A green roof with sedum mats is located above the second floor. This absorbs stormwater, restores habitat, adds insulation to the building roof, and provides a scenic study site and retreat for building occupants.
  • Exterior landscaping includes water efficient plantings and two rain gardens in front of the building.
  • A 35 percent reduction of water use in flush & flow fixtures.
  • Separate collection of refuse and recyclables with color-coded storage containers to avoid contamination of the waste stream.
  • Smoking is prohibited in the building and within 25 feet of entries, outdoor intakes and operable windows.
  • The building is mechanically ventilated with CO2 sensors programmed to generate an alarm when the conditions vary by 10 percent or more from the design value.
  • The design outdoor air intake flow for all zones is 30 percent greater than the minimum outdoor air ventilation rate required by ASHRAE Standard 62.1-2007, Ventilation Rate Procedure.
  • Lighting controls include scene controllers and occupancy sensors for classrooms, conference rooms and open plan workstations, with task lighting provided.

Further reading about the facility:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


University Architect @FrankCunhaIII Earns #ExecutiveMBA from @BizFeliciano at @MontclairStateU

On May 21, 2019, Frank Cunha III, graduated from the Executive Masters in Business Administration program at Montclair State University, where he has served the students as an outside consultant from 2001-2007 and as an employee in the Facilities department since 2007. Most recently Frank has served as the University Architect at the institution which is the second largest public university in the state.

Frank Cunha III, University Architect, has been with the University Facilities team since 2007. Since graduating from the New Jersey Institute of Technology School of Architecture in 1998, he has obtained licenses to practice architecture in 9 states. 

Frank is passionate about strategic planning, architectural design and constructing of complex projects in a challenging and ever changing environment. He considers the environment, energy, and the health and wellness of the occupants during all phases of the project while addressing the programming needs to ensure the stakeholder’s program requirements are met and align with the organization’s mission, vision and values. 

Frank has led various teams over the past 20-years, both with the American Institute of Architects, serving on local, state and national level committees; he has worked on various charity projects over the years; Through collaboration and enhancement of his expertise as a Registered Architect through practice, research and innovation he has dedicated his life to serving others. 

With the assistance of his design and construction teams, Frank has been responsible for many projects of various size and scope around campus. Some project highlights include: Student Recreation Center, Center for Environmental Life Sciences, Cali School of Music, School of Nursing, the Center for Computing and Information Science, Sinatra Hall, School of Business, Schmitt Hall and historic renovation and addition to College Hall, to name a few.  Click Here for more information.


University Architect @FrankCunhaIII Leads Architectural Walking Tour of @MontclairStateU’s Campus for Architect Guests, @AIANJ AIA Newark Suburban #AIA #University #Architect

On May 18th, AIA Newark Suburban held a campus walking tour of Montclair State University led by fellow member, Architect Frank Cunha III, AIA.  The tour addressed the history of the campus and the way it has been designed and constructed to protect and promote the health, safety, and welfare of the occupants of the buildings and grounds.

Building on a distinguished history dating back to 1908, Montclair State University is a leading institution of higher education in New Jersey.  Designated a Research Doctoral University by the Carnegie Classification of Institutions of Higher Education, the University’s 11 colleges and schools serve more than 21,000 undergraduate and graduate students with more than 300 doctoral, master’s and baccalaureate programs. Situated on a beautiful, 252-acre suburban campus just 12 miles from New York City, Montclair State delivers the instructional and research resources of a large public university in a supportive, sophisticated and diverse academic environment. University Facilities currently manages 70 buildings and approximately 5 million gross square feet of space on our campus. More information available: https://www.montclair.edu/about-montclair

Frank Cunha III, AIA, University Architect, has been with the University Facilities team since 2007.  Since graduating from the New Jersey Institute of Technology School of Architecture in 1998, he has obtained licenses to practice architecture in 9 states.  Frank is currently completing his Masters in Business Administration at Montclair State University and expects to graduate in May 2019.

Frank is passionate about strategic planning, architectural design and constructing of complex projects in a challenging and ever-changing environment.  He considers the environment, energy, and the health and wellness of the occupants during all phases of the project while addressing the programming needs to ensure the stakeholder’s program requirements are met and align with the organization’s mission, vision and values.

With the assistance of his design and construction teams, Frank has been responsible for many projects of various size and scope around campus. Some project highlights include: Student Recreation Center, Center for Environmental Life Sciences, Cali School of Music, School of Nursing, the Center for Computing and Information Science, Sinatra Hall, School of Business, Schmitt Hall and historic renovation and addition to College Hall, to name a few.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Architect’s Follow Up on the Cathedral of Notre-Dame de Paris and Creating Safer Work Environments #UnderConstruction #Safety #Design #Architecture #LessonsLearned #SafetyFirst #Design #Build #Architect #ilmaBlog

Follow Up on the Cathedral of Notre-Dame de Paris and Creating Safer Work Environments

A few weeks ago on April 15th, 2019, a fire destroyed the roof and wooden spire of the Notre-Dame de Paris.

One of the most famous timber frame fires started just after midnight on the 2nd September 1666 in Pudding Lane. After burning for three days it destroyed nearly 90 percent of the inhabitants of London’s homes.

Getty Images

Possible Causes For Blaze

Although officials say that the investigation could last several weeks and nothing can be ruled out at this time, there is much suspicion that the blaze may have been started by a short-circuit near the spire.

The short circuit may have been possibly caused by electrified bells, or negligence by construction workers carrying out the ongoing renovations, a theory fueled by the discovery of cigarette butts.

Typical Sources of Ignition

Not related to the fire, but for a matter of reference, sources of ignition during construction may generally include: (1) Hot works – cutting, grinding, soldering, hot pitching; (2) Faulty electrical equipment – damaged sockets and equipment, service strikes, temporary supplies and halogen lighting; (3) Arson – works in high crime rate areas, protests and objections to the scheme, disgruntled employees or contractors; (4) Reactive chemicals; (5) Fire Loading; (6) Fire Spread – The Offsite Risks; (7) and Constrained sites.   It will be interesting to see what the investigators are able to uncover in the following weeks.

André Finot, the cathedral’s spokesman, pointed out traces of damage. “Everywhere the stone is eroded, and the more the wind blows, the more all of these little pieces keep falling,” he said. (Photo Credit: Dmitry Kostyukov for The New York Times)

Ongoing Renovations

Fallen stones on the cathedral’s roof. Experts say that the building has reached a tipping point and that routine maintenance is no longer enough to prevent rain, wind and pollution from causing lasting damage. (Photo Credit: Dmitry Kostyukov for The New York Times)
Masonry that has broken away or that was taken down as a precautionary measure has been piled up on a small lawn at the back of the cathedral. (Photo Credit: Dmitry Kostyukov for The New York Times)

According to the New York Times, the biggest renovation at the cathedral took place between 1844 and 1864 when the spire and the flying buttresses were rebuilt.  The most recent overhaul, however, was meant to be understated. “The idea isn’t to replace every single stone. I don’t want to give this cathedral a face-lift,” said Philippe Villeneuve, the chief architect behind the project.  The renovations, which are estimated to cost $150 million euro ($169 million) were still ongoing when the cathedral caught fire.  Most likely something to do with the renovations of the cathedral led to its temporary demise.

Design Input

The event, which occurred during holy week sparked an intense national debate on how the 856-year-old cathedral should be rebuilt.  The French public will get a say on how the fire-ravaged Notre Dame cathedral will be rebuilt, officials say. 

FYI: In a separate blog post, ILMA plans to do a write up on the current designs that are being suggested by Architects and designers around the world.

Construction Workers – Risk Management

As a matter of course, this heartbreaking occurrence give us pause to consider the threats that can occur during construction.  Some risks to workers that need to be managed during construction and renovations include the following: (1) Working at Height; (2) Slips, Trips and Falls; (3) Moving Objects; (4) Noise; (5) Manual Handling; (6) Vibrations; (7) Collapses; (8) Asbestos; (9) Electricity; (9) Respiratory diseases. (Sources: Top 10 construction health and safety risks) and OSHA’s Top Four Construction Hazards); From the perspective of keeping the building safe during renovations and/or construction and saving lives, the following should be considered:

Building Safety – Risk Management

  1. Installation of sprinkler systems and fire detection systems early on in construction
  2. Availability of standpipes
  3. Commissioning the sprinkler system
  4. Access to fire extinguishers
  5. Make sure your fire detection and warning systems work
  6. Maintaining means of egress; Building compartmentation and protected fire routes in as the building is constructed
  7. Protect emergency escape routes
  8. Secure the site against arson
  9. Protect temporary buildings and accommodation
  10. Store equipment safely
  11. Design out hot works
  12. Keep the site tidy
  13. Keep project site and equipment safe
  14. No smoking
  15. Increase security for the site – CCTV, Full height hoarding, signage
  16. Engagement of local fire departments – to assess water pressure and accessibility
  17. Proper fire risk assessment that considers fire loading and fire separation distances

Learning From the Tragedy of the Cathedral of Notre-Dame de Paris

As timber is becoming increasingly more popular in high rises it is important to consider the past when managing the risks of projects utilizing wood framing.  Although there are many studies and test on modern day timber/wood designs, it is still important to consider the risks that are present on any jobsite.  Spending the money to do construction the right way will help reduce the inherent risks with construction – both to safeguard people as well as the buildings that we cherish.

For more information on my take on what happened at Notre Dame, please consider checking out the original articles: Personal Reflection on the Tragedy of April 15, 2019 at Notre Dame Cathedral in Paris and What Makes Notre Dame Cathedral So Important as a Work of Architecture?.

Additional Reading:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The More You Serve the More You Earn

Friends, I have been thinking more and more how I can add value to the people I serve. I have also been trying to figure out how to scale up what I am currently doing (that which I love), so that I can impact more lives and serve more people. When I came across this Dave Ramsey video I had to share it with my audience. I hope it gives you a different perspective on how we measure our wealth and well-being.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Will Higher Education Look Like 5, 10 or 20 Years From Now? Some Ways Colleges Can Reinvent Themselves #iLMA #eMBA #Innovation #Technology #Planning #Design #HigherEducation #HigherEd2030 #University #Architect

Introduction

Change is a natural and expected part of running a successful organization. Whether big or small, strategic pivots need to be carefully planned and well-timed. But, how do you know when your organization is ready to evolve to its next phase? Anyone that listens, watches, or reads the news knows about the rising cost of higher education and the increasing debt that education is putting on students and alumni and their families.

At a time when education is most important to keep up with increasing technological changes, institutions need to pivot or face imminent doom in an ever increasing competitive environment. Competition can come from startups or external factors in the higher education market therefore it is increasingly necessary for institutions of higher learning to take a different approach to their business operations.

This post will focus on:

  • Current Trends
  • Demographic Shifts
  • Future of Higher Education (and impacts on University Facilities & Management)
    • Changing Assumptions
    • Implications for the Physical Campus
    • Changing Trajectory
    • More Trends in Higher Education (Towards 2030)
  • Driving Technologies
  • External Forces

Current Trends

  • Online education[i] has become an increasingly accepted option, especially when “stackable” into degrees.
  • Competency-based education lowers costs and reduces completion time for students.
  • Income Share Agreements[ii] help students reduce the risk associated with student loans.
  • Online Program Manager organizations benefit both universities and nontraditional, working-adult students.
  • Enterprise training companies are filling the skills gap by working directly with employers.
  • Pathway programs facilitate increasing transnational education[iii], which serves as an additional revenue stream for universities.

Demographic Shifts

According to data from the National Clearinghouse and the Department of Education[iv]:

  • The Average Age of a College/University Student Hovers Around Twenty-Seven (Though That Is Decreasing as The Economy Heats Up)
  • 38% of Students Who Enrolled In 2011 Transferred Credits Between Different Institutions At Least Once Within Six Years.
  • 38% of Students Are Enrolled Part-Time.
  • 64% of Students Are Working Either Full-Time or Part-Time.
  • 28% of Students Have Children of Their Own or Care For Dependent Family Members.
  • 32% of Students Are from Low-Income Families.
  • The Secondary Education Experience Has an Increasingly High Variation, Resulting In Students Whose Preparation For College-Level Work Varies Greatly.

Future of Higher Education (and impacts on University Facilities & Management)

The future of higher education depends on innovation. 

University leaders who would risk dual transformation are required to exercise full commitment to multiple, potentially conflicting visions of the future. They undoubtedly confront skepticism, resistance, and inertia, which may sway them from pursuing overdue reforms.[v]

Change is upon us.

“All universities are very much struggling to answer the question of: What does [digitization[vi]] mean, and as technology rapidly changes, how can we leverage it?” . . . . Colleges afraid of asking that question do so at their own peril.”[vii]

James Soto Antony, the director of the higher-education program at Harvard’s graduate school of education.

Changing Assumptions

Until recently the need for a physical campus was based on several assumptions:

  • Physical Class Time Was Required
  • Meaningful Exchanges Occurred Face to Face
  • The Value of an Institution Was Tied to a Specific Geography
  • Books Were on Paper
  • An Undergraduate Degree Required Eight Semesters
  • Research Required Specialized Locations
  • Interactions Among Students and Faculty Were Synchronous

Implications for the Physical Campus

  • Learning – Course by course, pedagogy is being rethought to exploit the flexibility and placelessness of digital formats while maximizing the value of class time.
  • Libraries – Libraries are finding the need to provide more usable space for students and faculty.  Whether engaged in study, research or course projects, the campus community continues to migrate back to the library.
  • Offices – While the rest of North America has moved to mobile devices and shared workspaces, academic organizations tend to be locked into the private, fixed office arrangement of an earlier era – little changed from a time without web browsers and cell phones. 
  • Digital Visible – From an institutional perspective, many of the implications of digital transformation are difficult to see, lost in a thicket of business issues presenting themselves with increasing urgency. 

Changing Trajectory

University presidents and provosts are always faced with the choice of staying the course or modifying the trajectory of their institutions.  Due to failing business models, rapidly evolving digital competition and declining public support, the stakes are rising.  All should be asking how they should think about the campus built for the 21st century.[viii]  J. Michael Haggans[ix] makes the following recommendations:

  • Build no net additional square feet
  • Upgrade the best; get rid of the rest
  • Manage space and time; rethink capacity
  • Right-size the whole
  • Take sustainable action
  • Make campus matter

More Trends in Higher Education (Towards 2030)

  • The Rise of The Mega-University[x]
  • ; Public Private Partnerships (P3’s) Procurement Procedures Will Become More Prevalent
  • More Colleges Will Adopt Test-Optional Admissions
  • Social Mobility Will Matter More in College Rankings
  • Urban Colleges Will Expand[xi] — But Carefully
  • Financial Crunches Will Force More Colleges to Merge
  • The Traditional Textbook Will Be Hard to Find; Free and Open Textbooks
  • More Unbundling and Micro-Credentials
  • Continued Focus on Accelerating Mobile Apps
  • Re-Imagining Physical Campus Space in Response to New Teaching Delivery Methods
  • Transforming the Campus into A Strategic Asset with Technology
  • Education Facilities Become Environmental Innovators
  • Ethics and Inclusion: Designing for The AI Future We Want to Live In
  • Visibility (Transparency) And Connectedness
  • Sustainability from Multiple Perspectives
  • Better Customer Experiences with The Digital Supply Chain
  • Individualized Learning Design, Personalized Adaptive Learning
  • Stackable Learning Accreditation
  • Increased Personalization: More Competency-Based Education They’ll Allow Students to Master A Skill or Competency at Their Own Pace.
  • Adaptation to Workplace Needs They’ll Adapt Coursework to Meet Employer Needs for Workforce Expertise
  • Greater Affordability and Accessibility They’ll Position Educational Programs to Support Greater Availability.
  • More Hybrid Degrees[xii]
  • More Certificates and Badges, For Example: Micro-Certificates, Offer Shorter, More Compact Programs to Provide Needed Knowledge and Skills Fast[xiii]
  • Increased Sustainable Facilities – Environmental Issues Will Become Even More Important Due to Regulations and Social Awareness; Reduced Energy Costs, Water Conservation, Less Waste
  • Health & Wellness – Physical, Spiritual and Metal Wellbeing
  • Diversity and Inclusion Will Increase
  • Rise of The Micro-Campus[xiv] And Shared Campuses[xv]
  • E-Advising to Help Students Graduate
  • Evidence-Based Pedagogy
  • The Decline of The Lone-Eagle Teaching Approach (More Collaboration)
  • Optimized Class Time (70% Online, 30% Face to Face)
  • Easier Educational Transitions
  • Fewer Large Lecture Classes
  • Increased Competency-Based and Prior-Learning Credits (Credit for Moocs or From “Real World” Experience)[xvi]
  • Data-Driven Instruction
  • Aggressive Pursuit of New Revenue
  • Online and Low-Residency Degrees at Flagships
  • Deliberate Innovation, Lifetime Education[xvii]
  • The Architecture of The Residential Campus Will Evolve to Support the Future.
  • Spaces Will Be Upgraded to Try to Keep Up with Changes That Would Build In Heavy Online Usage.
  • Spaces Will Be Transformed and Likely Resemble Large Centralized, Integrated Laboratory Type Spaces. 
  • Living-Learning Spaces in Combination Will Grow, But On Some Campuses, Perhaps Not In The Traditional Way That We Have Thought About Living-Learning To Date.

Driving Technologies:

  • Emerging Technologies – Such as Augmented Reality, Virtual Reality, And Artificial Intelligence – Will Eventually Shape What the Physical Campus Of The Future Will Look Like, But Not Replace It.[xviii]
  • Mobile Digital Transformation[xix]
  • Smart Buildings and Smart Cities[xx]
  • Internet of Things
  • Artificial Intelligence (AI), Including Natural Language Processing
  • Automation (Maintenance and Transportation Vehicles, Instructors, What Else?)
  • Virtual Experience Labs, Including: Augmented Reality, Virtual Reality Learning, And Robotic Telepresence 
  • More Technology Instruction and Curricula Will Feature Digital Tools and Media Even More Prominently
  • New Frontiers For E-Learning, For Example, Blurred Modalities (Expect Online and Traditional Face-To-Face Learning to Merge)[xxi]
  • Blending the Traditional; The Internet Will Play Bigger Role in Learning
  • Big Data: Colleges Will Hone Data Use to Improve Outcomes

External Forces:

  • [xxii]: Corporate Learning Is A Freshly Lucrative Market
  • Students and Families Will Focus More on College Return On Investment, Affordability And Student Loan Debt
  • [xxiii]
  • Greater Accountability; Schools will be more accountable to students and graduates
  • Labor Market Shifts and the Rise of Automation
  • Economic Shifts and Moves Toward Emerging Markets
  • Growing Disconnect Between Employer Demands and College Experience 
  • The Growth in Urbanization and A Shift Toward Cities 
  • Restricted Immigration Policies and Student Mobility
  • Lack of Supply but Growth in Demand
  • The Rise in Non-Traditional Students 
  • Dwindling Budgets for Institutions[xxiv]
  • Complex Thinking Required Will Seek to Be Vehicles of Societal Transformation, Preparing Students to Solve Complex Global Issues

Sources & References:


[i] Online education is a flexible instructional delivery system that encompasses any kind of learning that takes place via the Internet. The quantity of distance learning and online degrees in most disciplines is large and increasing rapidly.

[ii] An Income Share Agreement (or ISA) is a financial structure in which an individual or organization provides something of value (often a fixed amount of money) to a recipient who, in exchange, agrees to pay back a percentage of their income for a fixed number of years.

[iii] Transnational education (TNE) is education delivered in a country other than the country in which the awarding institution is based, i.e., students based in country Y studying for a degree from a university in country Z.

[iv] Article accessed on April 16, 2019: https://er.educause.edu/articles/2019/3/changing-demographics-and-digital-transformation

[v]Article accessed on April 16, 2019: https://ssir.org/articles/entry/design_thinking_for_higher_education

[vi] Digitization is the process of changing from analog to digital form.

[vii] Article accessed on April 16, 2019:  https://qz.com/1070119/the-future-of-the-university-is-in-the-air-and-in-the-cloud

[viii] Article accessed on April 16, 2019: http://c21u.gatech.edu/blog/future-campus-digital-world

[ix] Michael Haggans is a Visiting Scholar in the College of Design at the University of Minnesota and Visiting Professor in the Center for 21st Century Universities at Georgia Institute of Technology.  He is a licensed architect with a Masters of Architecture from the State University of New York at Buffalo.  He has led architectural practices serving campuses in the US and Canada, and was University Architect for the University of Missouri System and University of Arizona.

[x] Article accessed on April 16, 2019:  https://www.chronicle.com/interactives/Trend19-MegaU-Main

[xi] Article accessed on April 16, 2019:  https://www.lincolninst.edu/sites/default/files/pubfiles/1285_wiewel_final.pdf

[xii] Article accessed on April 16, 2019: https://www.fastcompany.com/3046299/this-is-the-future-of-college

[xiii] Article accessed on April 16, 2019: https://www.govtech.com/education/higher-ed/Why-Micro-Credentials-Universities.html

[xiv] Article accessed on April 16, 2019: https://global.arizona.edu/micro-campus

[xv] Article accessed on April 16, 2019: https://evolllution.com/revenue-streams/global_learning/a-new-global-model-the-micro-campus

[xvi] Article accessed on April 16, 2019:  https://www.chronicle.com/article/The-Future-Is-Now-15/140479

[xvii] Article accessed on April 16, 2019:  https://evolllution.com/revenue-streams/market_opportunities/looking-to-2040-anticipating-the-future-of-higher-education

[xviii] Article accessed on April 16, 2019: https://www.eypae.com/publication/2017/future-college-campus

[xix] Article accessed on April 16, 2019: https://edtechmagazine.com/higher/article/2019/02/digital-transformation-quest-rethink-campus-operations

[xx] Article accessed on April 16, 2019: https://ilovemyarchitect.com/?s=smart+buildings

[xxi] Article accessed on April 16, 2019: https://www.theatlantic.com/education/archive/2018/04/college-online-degree-blended-learning/557642

[xxii] Article accessed on April 16, 2019: https://qz.com/1191619/amazon-is-becoming-its-own-university

[xxiii] Article accessed on April 16, 2019: https://www.fastcompany.com/3029109/5-bold-predictions-for-the-future-of-higher-education

[xxiv] Article accessed on April 16, 2019: https://www.acenet.edu/the-presidency/columns-and-features/Pages/state-funding-a-race-to-the-bottom.aspx

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Makes Notre Dame Cathedral So Important as a Work of Architecture? #NotreDame #Architecture #Design #History

Notre Dame Cathedral is a medieval Catholic cathedral on the Île de la Cité located in Paris, France. The cathedral is considered to be one of the finest examples of Gothic architecture. The innovative use of the rib vault and flying buttress, the enormous and colorful rose windows, gothic arched windows and doorways, and the naturalism and abundance of its sculptural decoration all set it apart from earlier Romanesque architecture.

Notre Dame Cathedral is considered to be of the most well-known church buildings in the world. Construction started in 1163 and finished in 1345. It is devoted to Virgin Mary and it is one of the most popular monuments in Paris. The cathedral underwent many changes and restorations throughout time.

The location of this cathedral has a long history of religious cult. The Celts celebrated rituals there before the Romans erected a temple devoted to Jupiter. It was also the place were the first Christian church, Saint Étienne, was built. It was founded by Childeberto I in 528 AD. In 1160 the church was deemed and in 1163 the construction of the cathedral started. Opinions differ as to whether Sully or Pope Alexander III laid the foundation stones of the cathedral. Several architects took part in the construction, so differences in style are clearly seen.

There are around 13 million people who visit the Notre Dame de Paris Cathedral every year, which means this is an average of 30,000 people every day, growing to around 50,000 pilgrims and visitors who enter the cathedral on peak days.

History

Construction began in 1163 after Pope Alexander III laid the cornerstone for the new cathedral. By the time of Bishop Maurice de Sully’s death in 1196, the apse, choir and the new High Altar were all finished, while the nave itself was nearing completion. In 1200, work began on the western facade, including the west rose window and the towers, all of which were completed around 1250, along with a new north rose window. Also during the 1250s, the transepts were remodeled in the latest style of Rayonnant Gothic architecture by architects Jean de Chelles and Pierre de Montreuil, and the clerestory windows were enlarged. The last remaining elements were gradually completed during the following century.

The Cathedral of Notre-Dame de Paris was built on a site which in Roman Lutetia is believed to have been occupied by a pagan temple, and then by a Romanesque church, the Basilica of Saint Étienne, built between the 4th century and 7th century.

Notre-Dame Cathedral suffered damage and deterioration through the centuries, and after the French Revolution it was rescued from possible destruction by Napoleon, who crowned himself emperor of the French in the cathedral in 1804. Notre-Dame underwent major restorations by the French architect E.-E. Viollet-le-Duc in the mid-19th century. The cathedral is the setting for Victor Hugo’s historical novel Notre-Dame de Paris (1831).

Gothic Cathedral Builders

With the aid of only elementary drawings and templates, master stone masons meticulously directed the construction of the great medieval cathedrals of Europe. The practices of intuitive calculation, largely based on simple mathematical ratios and structural precedent, were closely guarded and passed between successive generations of masons. Specific site conditions and the insatiable demand by church authorities for higher and lighter buildings provided the impetus for continual development.

The Spire

Symbolically, spires have two functions. Traditionally, one has been to proclaim a martial power of religion. A spire, with its reminiscence of the spear point, gives the impression of strength. The second is to reach up toward the skies. The celestial and hopeful gesture of the spire is one reason for its association with religious buildings.

Holy Christian Relics

The Relics of Sainte-Chapelle are relics of Jesus Christ acquired by the French monarchy in the Middle Ages and now conserved by the Archdiocese of Paris. They were originally housed at Sainte-Chapelle in Paris and are now in the cathedral treasury of Notre Dame de Paris.  Relics believed to be a piece of the cross on which Jesus was crucified, as well as the Crown of Thorns he wore, have been kept at the cathedral for centuries. The braided circle held together by golden thread has about 70 or so thorns attached. The relics were obtained from the Byzantine Empire in 1238 and brought to Paris by King Louis IX.

Wood Construction

The framing of Notre-Dame de Paris is certainly one of the oldest structures in Paris with that of Saint-Pierre de Montmartre (1147).

It is poetically and endearingly called the Forest because of the large number of wood beams that had to be used to set it up.  Each beam coming from a different tree. It is a framework of oaks. Its measurements are very impressive: More than 328 feet (100 meters) long, 43  feet (13 meters) wide in the nave, 130 feet (40 meters) in the transept and 33 feet (10 meters) high.

In the choir, there existed a first frame with woods felled around 1160-1170 (it is estimated that some could have 300 to 400 years, which brings us to the 8th or 9th centuries !!!). This first frame has disappeared, but woods were reused in the second frame installation in 1220.

In the nave, the carpentry is set up between 1220 and 1240.  The work of the nave began between 1175 and 1182, after the consecration of the choir. The work stops after the fourth bay leaving the nave unfinished while the elevation of the facade is begun in 1208. The work of the nave will be resumed in 1218 to counter the façade.

On this frame rests a lead roof consisting of 1326 tables 0.20 inches (5 mm) thick weighing 210 tons . In the eleventh and twelfth centuries, roofs were covered with flat tile churches because of the abundant clay deposits. Paris, being far from such deposits, was preferred to lead. In 1196, Bishop Maurice de Sully bequeathed 5,000 pounds for the purchase of lead.

Although the carvings of the choir and the nave went through the centuries, those of the transepts and the spire were redone in the middle of the 19th century during the great restoration campaign of the cathedral under the direction of The Duke . Made according to the principles then in force, they differ from the framework of the choir and the nave, in particular as regards the dimensions of the beams which are much more imposing than those of the Middle Ages and more distant.

The Facade

Notre Dame’s iconic facade evokes a harmony of design based on nature and represents a level of detailed craftsmanship that no longer subsists in contemporaneous architecture. From Georges-Eugène Haussmann’s immense plaza the visitor is captivated by a stunning view of the facade’s three elaborately-decorated portals.

The left-side portal of the Virgin depicts the life of the Virgin Mary, as well as a coronation scene and an astrological calendar. The central portal depicts the Last Judgement in a kind of vertical triptych. The first and second panels show the resurrection of the dead, the judgment, Christ, and apostles.The pièce de résistance is the reigning Christ which crowns the scene.

The portal of Saint-Anne on the right features Notre Dame’s oldest and finest surviving statuary (12th century) and depicts the Virgin Mary sitting on a throne, the Christ child in her arms. Above the portals is the gallery of kings, a series of 28 statues of the kings of Israel.

The magnificent exterior of Notre Dame’s West rose window depicts the biblical figures of Adam and Eve on the outer rim. It measures an impressive 33 feet (10 meters) in diameter, which was the largest rose window constructed in its day.

The final level of the facade before reaching the towers is the “Grande Galerie” which connects the two towers at their bases. Fierce demons and birds decorate the grand gallery but are not easily visible from the ground.

The Cathedral Towers

Notre Dame’s ornate towers became a legend thanks to 19th-century novelist Victor Hugo, who invented a hunchback named Quasimodo and had him inhabit the South tower in “The Hunchback of Notre Dame”.

The towers are 223 feet (68 meters) tall offering remarkable views of the Ile de la Cité, the Seine River and the entire city itself.  After climbing 400 stairs you are rewarded with gargoyles of grimacing demons and menacing carrion birds. The South tower houses Notre Dame’s infamous 13-ton bell.

You can also admire the detail of Notre Dame’s magnificent spire, destroyed during the revolution and restored by Viollet-le-Duc.

The Magnificent Interior

Medieval architects represented their idea of human earthliness in relation to heaven through structures that were at once grandiose and ethereal–and Notre Dame’s interior achieves exactly this. The cathedral’s long halls, vaulted ceilings, and soft light filtered through intricate stained glass help us understand the medieval perspective of humanity and divinity. There is no access to the cathedral’s upper levels, obliging visitors to remain earthbound, gazing upward. The experience is breathtaking, especially on a first visit.

The cathedral’s three stained-glass rose windows are the interior’s outstanding feature. Two are found in the transept: the North rose window dates to the 13th century and is widely considered to be the most stunning. It depicts Old Testament figures surrounding the Virgin Mary. The South rose window, meanwhile, depicts the Christ surrounded by saints and angels. More modern stained glass, dating to as late as 1965, is also visible around the cathedral.

Notre Dame’s organs were restored in the 1990’s and are among the largest in France.

The choir includes a 14th-century screen which portrays the biblical Last Supper. A statue of the Virgin and Christ child, as well as funeral monuments to religious figures, are also found here.

Near the rear, Notre Dame’s treasury includes precious objects, such as crosses and crowns, made of gold and other materials.

Countless processions and historical moments took place inside the cathedral, including the crowning of Henry VI, Mary Stuart, and Emperor Napoleon I.

Sources:

http://www.notredamedeparis.fr/en/la-cathedrale/architecture/la-charpente

https://www.tripsavvy.com/notre-dame-cathedral-highlights-and-facts-1618863

https://en.wikipedia.org/wiki/Haussmann%27s_renovation_of_Paris

https://en.wikipedia.org/wiki/Notre-Dame_de_Paris

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Leadership Series: Live Your Passion #ilmaBlog #fc3Leadership #Leadership #Passion #DiscoverYourPurpose #LiveYourPassion

Leadership Series: Living Your Passion

Presented by: Frank Cunha III on behalf of the Montclair State University Center for Leadership Development (Spring 2019)

This 50-minute presentation will be a discussion on why it is important to live your passion and follow your dreams.  I will use my experience as a leader in my field to encourage the audience to make choices that will enhance their lives.  I will discuss the importance of using metrics and guiding values in making life choices that will define who we are and who we are destined to become.  I will draw on my personal experience to encourage the audience to follow their dreams and succeed in life by choosing a path that may not always be easy but will always be rewarding. We will be discussing how we can lead through a life of service and dedication to our passion.

Outcomes for participants:

  • Discover that success often follows passion
  • Discover your gifts and talents
  • The sooner you discover your life’s purpose the sooner you can start living your dreams
  • Passion will help you follow your dreams through difficult challenges
  • Success can be measured in different ways – time, people, money
  • Discover the virtues of integrity and honesty in your professional life
  • Understanding courage and earning respect
  • Life is not meant to be easy, but it is meant to be fulfilling
  • Serving people by tapping into your passion

Brainstorm Questions to Help You Discover Your Passion and Purpose in Life:

  1. What do you love to do?  
  2. What would you do even if you were not getting paid?
  3. What comes easily to you?
  4. What are two qualities I most enjoy expressing in the world?
  5. What are two ways I most enjoy expressing these qualities?
  6. Make a list of all the times you’ve felt the greatest joy in your life.
  7. When have I felt most fulfilled?
  8. What am I naturally good at?
  9. How could I apply my talents creatively?
  10. What makes me feel good about myself?
  11. What do I fear that excites me?
  12. What activities allow me to be creative?
  13. What causes am I interested in?
  14. What do I enjoy reading about?
  15. What do I love talking about?
  16. What would I regret not having tried?
  17. What would I love to teach others about?
  18. What help or advice do others often seek out from me?
  19. What am I most grateful for?
  20. What would I do for free for the rest of my life?
  21. What kind of life do I want to live?
  22. What do I want to be known for?
  23. How do I define success?
  24. What is my real passion?

5 Lessons Learned From Interviewing And Learning From People Who Are Doing Work They Love. 

By Jessica Semaan (Founder, www.thepassion.co

We’re all gifted with a set of talents and interests that tell us what we’re supposed to be doing. Once you know what your life purpose is, organize all of your activities around it. Everything you do should be an expression of your purpose. If an activity or goal doesn’t fit that formula, don’t work on it.

Practice Your Fears

Afraid of rejection? Lack of structure? Uncertainty? Practice it. We found that the secret to successfully transitioning to doing what you love is to build a thick skin. 

Create Your Own Board

Support is a necessary part of pursuing your passions. Surround yourself with people that inspire you and want to help you. I have seen those who have chosen a “board of supporters” to be the most successful. Pick three or four people: an expert in the space you are interested in, two people pursuing similar passions and a close friend who knows you well and you can reach out to them throughout the process. Most importantly be sure you are on this board too, supporting yourself throughout the journey.

Simplify

Doing work you love can oftentimes mean less money in the bank in the short to medium term. Be prepared to simplify your life. Think cooking at home with friends over expensive dinners; buy one less new outfit. I found that this part of the experience is the most gratifying: it pushes you to become resourceful and creative and you realize that the pleasures of life are rarely related to money.

Be Patient

They say do what you love and the rest will follow. I say do what you love with persistence and the rest will follow. When you’re following your passions, unexpected doors will open to you. With more clarity, you are more likely to spot opportunities that will lead to your success. Just keep believing, especially in moments when you feel stuck, overwhelmed or don’t see tangible results.

A palliative nurse recorded the most common regrets and put her findings into a book called “The Top Five Regrets of The Dying.” The #1 regret of the dying was: “I wish I had the courage to live a life true to myself and instead lived the life that others expected of me”

Don’t wait till your deathbed to live the life that you want and do work you love. Start small and start now.

What is one small step you can take towards one of your passions today? If you are unsure about your passion, what is one interest you have that you can test out on the side?

“True desire in the heart for anything good is God’s proof to you sent beforehand to indicate that it’s yours already. So the desire you have, that itch that you have to be whatever it is you want to be … that itch, that desire for good is God’s proof to you sent already to indicate that it’s yours. You already have it. Claim it.” –Denzel Washington

Developed by Chris and Janet Attwood, The Passion Test is a simple, yet elegant, process. You start by filling in the blank 15 times for the following statement: “When my life is ideal, I am ___.” The word(s) you choose to fill in the blank must be a verb.

“What should I do with my life?” “What is my passion?” or “What is my life purpose.”

  • PASSION AS AN ENGINE FOR SUCCESS
    • Living a life of passion motivates and gets you excited about what you do
    • Living a life of passion helps you face challenges
  • DISCOVERING YOUR GIFTS & TALENTS
    • How can I discover what I am passionate about?
    • Creating a network of advisors – They can help you see things you cannot see
      • Even CEO’s have coaches and mentors
  • HOW DOES PASSION LEAD TO SUCCESS?
    • Living a life of passion informs what you do with your life
    • Passion gives you drive, clarity and focus
  • HOW DO YOU MEASURE SUCCESS?
    • Time for yourself and time for love ones
    • Connecting with people, socially, professionally, and personally
    • Experiences (Traveling)
    • Hobbies: Fitness, Reading, Museums, Sports
    • How much money you make, compensation/benefits
    • Security
  • LIVING A PASSIONATE & VIRTUOUS LIFE
    • Honesty, Integrity, Courage, Persistence, Loyalty, Respect for self and others
      • These virtues and values help guide your decisions
  • SERVING PEOPLE BY UTILIZING YOUR PASSION
    • Living a life of passion helps you serve others by filling a need
    • Makes you feel like your life has purpose and meaning and gives you a reason to wake up excited to start your day
  • USING YOUR PASSION TO BECOME UNSTUCK
    • When life offers you a choice, you can use your passion to help you make a decision
    • Be ready for when life offers you an opportunity

Contact Information:        

Frank Cunha III, University Architect at Montclair State University

                                                LinkedIn: https://www.linkedin.com/in/fc3arch

                                                Website: https://www.frankcunha.com

                                                Blog: https://ilovemyarchitect.com

                                                Email: fc3arch@gmail.com

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook