The @FelicianoCenter’s @MIXLabDesign Design Charrette for “B.E.L.A.” Summer High School Program Entailing the Redevelopment of a Significant Urban Historic Site #UrbanPlanning #Redevelopment #Business #Entrepreneur #Education #HighSchool #DesignThink #Innovation #NJEd @MontclairStateU

On July 9, 2019, in the capacity of University Architect at Montclair State University (and Alumni of the Feliciano School of Business). I had the privilege of participating in a design charrette with a local high school. The project consists of an urban redevelopment site with a precious historical building at the site. I was invited by the people who run the Montclair State University MIX Lab (Feliciano Center for Entrepreneurship), an interdisciplinary hub for transformative innovation, and digitally mediated making.

M.I.X. stands for Making and Innovating for X, where X is the unknown, that which exceeds our grasp, the future, and the open-ended nature of creativity, good design and big problems. The co-directors of MIX Lab are Iain Kerr, associate professor of Innovation Design, and Jason Frasca, entrepreneurship instructor.

I graciously accepted Jason and Ian’s invitation to participate as a guest critic along with another fellow professional, Frank Gerard Godlewski of Fellsbridge Studio LLC, who specializes in historic preservation in the area where the redevelopment project is located.  The format for the design charrette, hosted by the MIX Lab for the high school program led by high school teacher, Kevin Richburg, included: (1) The students, in groups of 4-5, presented their concepts for the redevelopment of the site (there were 5 teams); (2) the guest critics gave suggestions and further thoughts on how to further explore and develop the student’s ideas; (3) the guest critics summed up their thoughts for all the students with key take-aways.  The following is a recap of what I learned from the students (in so far as what is the most significant to them) and the key take-aways I offered the students (in no particular order of importance) from my perspective as an Architect who has been involved in the planning, design and construction of projects over the past 20-years.

What the Student Teams Focused on as Key Ideas for their Projects:

  • Historic preservation of the existing building
  • Connecting with local community
  • Local and state pride
  • Affordability
  • Sustainability
  • Celebration of diversity and inclusion
  • Love of the arts
  • Focus on the user “experience”
  • Spaces for families to enjoy
  • Entertainment
  • Accessibility to quality food and goods
  • Mixing of “Bright and Bold” historic and modern elements
  • Transformative
  • “Modern” vibe

Proposed Amenities of the Re-Development Site:

  • Supermarkets (one group proposed a two-story whole sale supermarket)
  • Open-air markets (farmer markets, etc.)
  • Retail, restaurants, food trucks
  • Open space, a square or plaza
  • Parking for visitors (possible tunnel or bridge)
  • Parking at perimeter

Types of Buildings (Programmed Spaces)

  • Main historic building’s exterior appearance
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail

Types of Exterior Spaces

  • Open spaces with green lawns and fountains
  • Places to reflect and remember
  • ·Field with stage and seating
  • Outdoor seating for restaurants
  • Areas to relax

Key Take-Aways & Ideas for Further Exploration:

  • Site plans – Delineate site elements separately from building elements (so easier to comprehend) using color or graphics (Example)
  • Floor plans – Delineate building areas/rooms with designated color so it is easier to understand program of spaces (i.e., circulation vs apartments vs retail vs support spaces, etc.) (Example)
  • Work together as a team – commemorate each other’s strengths but give everyone credit even those whose work may be behind the scenes
  • Focus on one main idea (let other ideas support the one main theme)
  • Context and Scale – Observe and learn from the surrounding community; apply those elements to the proposed project so that it complements the adjoining communities
  • Materials – Understand how the new materials can complement the historic ones (let the original historic building stand on its own and celebrate its historical significance)
  • Consider “big box” retail versus the Local “pop ups” (gentrification good and bad)
  • Parking/Transportation – As mass transportation has changed from ships to locomotives to buses and cars; look to the future as the world heads to autonomous vehicles (particularly China).  If parking is required think about how a parking lot or parking garage can be transformed in the future.  Example
  • Sustainability is important but do not forget to consider W.E.L.L. as well.  LEED/Sustainability concepts Resource 1 ; Resource 2 also check out the following link for ides about other program types for the redevelopment project Resource 3
  • Consider more technology in your projects, for instance: Smart CitiesAR/VR, and other innovate concepts, like: Immersive Experience and Virtual reality in theme park attractions. Also consider utilizing QR Codes as a teaching tool.
  • Consider developing a pedestrian mall by converting an existing street into a pedestrian friendly zone like they have done in Jersey City, NJ or Times Square, New York City, NY or Fremont Street Experience in Downtown Las Vegas, NV, the taking cars, trucks and buses off the street and giving the spaces back to the pedestrians who can enjoy it (also it would make the entire site one big site instead of two separate parcels dived by thru traffic).
  • Lastly, and not least important, when considering injecting modern elements with historic architecture, it must be considered whether the original is to remain intact or be altered.  There are interesting examples of tasteful alterations, however, the older I get the less comfortable I am with injecting new with old for the sake of “shock” value (where as a student of architecture 20 years ago the concept was more appealing).  I reminded the students of Notre Dame Cathedral in Paris, France, and the ensuing debate that is going on whether or not the renovations/upgrades should be true to the original or whether the new design should be bold and innovating and perhaps less true to the original.  Whether the designers choose to go in one direction or another much thought should be given to preserving the historical elements of our precious structures because they are irreplaceable (think Grand Central Station in New York City, NY, which acted as a catalyst for the preservation movement).  Click here to read about the history of the Preservation Battle of Grand Central Station.

Overall, I was impressed by the talent and creativity of all the students and I was pleased with the quality of their presentations. I hope I was able to contribute in some small way to the success of their respective projects.  The high school student participants’ contributions to the build environment would be welcomed by the design and construction industry, since the students are willing to understand and develop their skills in the area of deep thought, innovation, design, construction and socio-economic concepts at an early age.  I gladly encouraged each and every one of them by letting them know that if they choose a career in architecture, engineering, real-estate development, construction or related field that they would certainly all be able to achieve their goals based on their willingness and eagerness to learn and present their visions and concepts.   I hope my involvement was as rewarding for the students as it was for me.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Ask the Architect: What Are Some Questions College Administrators Should Ask Themselves Before They Start Planning for the Future? #Architect #UniversityArchitect #Ideas #Design #Planning

Sometimes Architects Design and Sometimes They Ask Questions – Here are 50 Questions for College Administrators to Consider as They Prepare to Plan For Their Future:

  1. As an institution what are we good at? What are we not so good at?
  2. Where do we want to go – What is our vision for where we are headed – academically and as a family of diverse individuals?
  3. How will people of all ages (continue to) learn in the future?
  4. How will students live, communicate, develop, work, play, share?
  5. What is the hierarchical structure of education (Provost, students, Student-Life; Administration vs Educators)?
  6. How can we address “Exclusivity Vs Inclusivity” within education (i.e., white, blue, green collars all working together)?
  7. What traditions do we want to keep?
  8. What traditions do we want to eliminate?
  9. How can we offer more value?  How can we offer more by spending less?
  10. How can we accelerate/decelerate the process – what needs to speed up and what needs to slow down?
  11. How can we attract more students from in-state and from out-of-state?
  12. How can we offer more online/hybrid and flip classroom learning?  What other educational methods should we explore?
  13. Who are our clients? Can we identify the student of the future (identity, celebrate, identity)?
  14. How can we establish a “network” of future business/professional relationships?
  15. How can we enable a positive transformation of self-awareness and development into early adulthood?
  16. The “College Experience,” what does this mean?  What will it mean in the future?
  17. How can we become more sustainable?  Are we creating a culture that values the planet?
  18. What are some sustainable strategies that we do well, what are some we need to work on?
  19. How can we utilize our spaces more efficiently during off-hours?
  20. How can we provide better connections to the outdoors, nightlife, theater, arts, dining, sports and other events?
  21. How can we offer more opportunities for community engagement?
  22. How can we consider the college campus as a living laboratory?
  23. What is the changing role of the professor/instructors?
  24. How can we form better interdisciplinary relationships from different colleges to inter-pollinate ideas with one another?
  25. How can we focus and capitalize on our strengths instead of our weakness?
  26. Is the “Tiny house” concept viable for student housing?
  27. Instead of student housing should we follow a “hotel” model?
  28. What does a student center of the future look like? What is a library of the future look like? 
  29. Can we create a new model for (higher) education so our students never stop learning/growing?
  30. Is it viable to transform from a singularly “degree” approach to a “tool box” approach where students gain the building blocks they need for that stage of their career?
  31. What are some public/private partnership opportunities?
  32. How can we promote health and wellness on our campus?
  33. How can we create a walkable campus for all our students and guests?
  34. How can we support our professors and researchers?
  35. How can we develop programs that engage the residents of the state?
  36. How can we develop a culture of caring and giving that shares the same positive values?
  37. How can we capitalize on our close relationship with local parks?
  38. How can we create a better connection with urban areas – Jersey City, Patterson, New York City, etc.?
  39. How can we become an “Innovation” district in our state?
  40. How can we start recruiting students at an earlier age?
  41. How can we better retain our students?
  42. How can we better support our students educational goals?
  43. How can we offer the best college experience for our students?
  44. How can our built facilities improve lives of the people we serve?
  45. How can our grounds improve lives of the people we serve?
  46. How can our people (bus drivers, gardeners, housekeepers, librarians, etc.) improve lives of the people we serve?
  47. How can we become an institution that others want to emulate?
  48. Is there a way that we can work with industry/business partners to leverage our role as an academic research facility?
  49. How can we make learning fun and enjoyable?
  50. How can we offer more meaning to people’s lives?

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


The 12 P’s: A Guideline of Design for Architects & Other People Who Want to Save the World and Design Like an Architect #ilmaBlog

  1. Principles
  2. Purpose
  3. People
  4. Production
  5. Planet
  6. Projects
  7. Programming
  8. Process
  9. Passion
  10. Perks
  11. Profits
  12. Practicality

Subscribe to our blog for updates on each of the 12 doctrines.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Some Ideas to Help Aruba Become the Greenest and Happiest Island #Sustainability #Planning #Architect #Island #Eco #Green #ilmaBlog

Having recently visited Aruba earlier this year, and have fallen in love with the island, I would like to take this moment to reflect on ways that the little island nation can achieve its sustainability goals over the next several years.  Over the past few years it has come a long way but there are still many things left to be addressed if it is to be the greenest happiest little island in the Caribbean as it has set out to do.

One Happy Island

Some background information before we begin — Aruba contains 70 square miles (178.91 square kilometers) of happiness and a population of 116,600 (as of July 2018).

The tiny island gem is nestled in the warm southern Caribbean with nearly 100 different nationalities happily living together. We welcome all visitors with sunny smiles and a warm embrace.

Aruba is an island and a constituent country of the Kingdom of the Netherlands in the southern Caribbean Sea, located about 990 miles (1,600 kilometers) west of the main part of the Lesser Antilles and 18 miles (29 kilometers) north of the coast of Venezuela. It measures 20 miles (32 kilometers) long from its northwestern to its southeastern end and 6 miles (10 kilometers) across at its widest point.

Together with Bonaire and Curaçao, Aruba forms a group referred to as the ABC islands. Collectively, Aruba and the other Dutch islands in the Caribbean are often called the Dutch Caribbean. Aruba is one of the four countries that form the Kingdom of the Netherlands, along with the Netherlands, Curaçao, and Saint Maarten; the citizens of these countries are all Dutch nationals. Aruba has no administrative subdivisions, but, for census purposes, is divided into eight regions. Its capital is Oranjestad. Unlike much of the Caribbean region, Aruba has a dry climate and an arid, cactus-strewn landscape. This climate has helped tourism as visitors to the island can reliably expect warm, sunny weather. Fortunately, it lies outside Hurricane Alley.

Aruba’s economy is based largely on tourism with nearly 1.5 million visitors per year, which has contributed to Aruba’s high population density.

Despite having one of the world’s smallest populations, Aruba does have a high population density at 1,490 per square mile (575 people per square kilometer), which is more than New York state.

During the Rio +20 United Nations Conference on Sustainable Development in 2012, the island announced it aim to cover its electricity demand by 100% renewable sources by 2020. In the same year, Aruba together with other Caribbean islands became member of the Carbon War Room’s Ten Island Challenge, an initiative launched at the Rio +20 Conference aiming for islands to shift towards 100% renewable energy. The benefits of becoming 100% renewable for Aruba include: reducing its heavy dependency on fossil fuel, thus making it less vulnerable to global oil price fluctuations, drastically reducing CO2 emissions, and preserving its natural environment.

(Sources: https://www.100-percent.org/aruba/; https://en.wikipedia.org/wiki/Aruba; http://worldpopulationreview.com/countries/aruba-population)

Some of the areas where Aruba seems to be excelling includes their recent ramp up of wind power – capitalizing on the constant wind that keep the tiny island habitable.

Other areas that they can improve on include the following:

Electric Vehicles

A whopping 87 percent of the entire power generation in the Caribbean comes from imported fossil fuels, and because so much of the region’s fuel comes from faraway sources, electricity costs are four times higher than they are in the United States. The economies of these islands are basically at the whim of global oil prices

The Caribbean has some other reasons to be enthusiastic about electric cars powered by a solar electric grid. The islands, on the whole, are small and low in elevation. The vast majority of islands in the Caribbean are smaller than 250 square miles and are fairly flat, with isolated peaks at most. 

This combination makes them ideal for electric vehicles in ways that, just for example, the U.S. is not. Most electric vehicles have limited ranges, with some only offering a hundred miles or less per charge. The higher-end vehicles can go further; the Nissan Leaf boasts 151 miles per charge, the Chevy Bolt 238 miles, and the Tesla Model S 315, but with still-long waiting times for a full charge, that’s about all you’re getting in an individual trip. That’s not great for hour-plus-long commutes from American suburbs, but for smaller islands with fewer hills to climb, that sort of range is just fine.

Customers who drive electric experience common benefits.

  • Charging up with electricity will cost you less than filling your tank with gas. Clients are experiencing savings of up to 50 percent on fuel costs and very low cost of maintenance.
  • Produce no-to-low tailpipe emissions. Even when upstream power plant emissions are considered, electric vehicles are 70 percent cleaner than gas-powered vehicles.
  • “Fuel” up with clean, Aruban-produced electricity and help our island achieve more energy diversity.
  • Drivers enjoy electric vehicles’ silent motor, powerful torque and smooth acceleration.

Although “solar” vehicles would be even better for this region, the ability for the island to “leap frog” ahead of other counties by building in an electric fueling infrastructure would help set it apart from other island nations.

(Sources: http://nymag.com/developing/2018/10/more-like-electric-car-ibbean.html; https://www.elmar.aw/about-elmar/sustainable-energy-and-electric-cars)

Solar Power

Although solar has come down over the past decade I was surprised that not more individuals capitalize on the sunny region with solar roof panels.

The recently constructed government building, Cocolishi, is one of the first buildings on Aruba with a solar roof. The solar panels provide 30 kW of renewable energy.

On the rooftops of the Multifunctional Accommodation Offices (MFA) in Noord and Paradera solar panels are installed. The MFA in Noord is an energy neutral building, this means it produces the same amount of energy as it consumes. The surplus during sunny days will be added to the grid.

Previously, solar panels were installed on the Kudawecha elementary school. These panels produce 175.5 kW solar energy.

The largest school solar rooftop project is installed on the Abramham de Veer School elementary school. This rooftop project produces 976 kW renewable energy.

The Caribbean’s first solar park opened in 2015 over the parking lot of the airport in Aruba. This solar park provide 3.5 MW solar energy and is one of the first renewable energy projects making use of the Free Zone of Aruba.

In Juana Morto, a residential area complex, solar panels are installed on the rooftops of different houses. Together the solar panels generate 13 kW of green energy.

Elmar, the electricity provider of Aruba, installed solar panels on the roofs of their offices. These buildings together provide 9.8 kW solar energy.

There are different decentralized solar projects on Aruba. Together they consist of 5 MW solar PV part and 3 MW rooftop schools & public buildings PV systems. Once built per the 2017 plan, the installation will provide an additional 13.5 MW providing power for approximately 3,000 households.

Given the amount of sunshine this island receives, expanding their solar portfolio seems prudent.

(Source: https://www.freezonearuba.com/business-opportunities/solar-projects-aruba/)

Wind Power

Wind Park ‘Vader Piet’ is located on Aruba’s east coast in the Dutch Caribbean, this wind farm consists of 10 turbines with an actual capacity of 30 megawatts (MW). Aruba’s current wind power production represents about 15-20 percent of its total consumption, which places it fourth globally and still some way behind Denmark, the current global leader, which produces 26 percent of its power from wind. But today, with a second wind farm about to be deployed, Aruba is set to double its wind energy output, placing it firmly in first place.

It’s hard to believe that just a few windmills are able to produce an output of 30 megawatts of energy, suppling 126,000 MWh of electricity to the national grid each year, displacing fossil fuel-generated energy and supporting the island’s transition towards renewable energy sources.

Given that the wind is a constant, exploiting this resource seems like a profitable and intelligent thing to do.

(Source: https://www.utilitiesarubanv.com/main/embracing-the-winds-of-change/)

Off-Roading

I love that the island has embraced off-road vehicles (ORV); it is a great way to experience the beauty around us in a challenging and fun way adding to the experience.  However, it would be very wise to develop designated areas for off-road vehicles to eliminate (or at least minimize) the human impact on the beauty of this island.  Because it’s greatest commodity is the natural beauty – Sun, ocean, nature and wildlife; Aruba (and other island nations) need to consider how to balance the fun aspect with some regulations that will preserve the beauty of the natural world for future generations.

As you may already know, the use ORV’s on coastal beaches is an activity that attracts considerable controversy amongst beach users.

ORV driving is considered as main contributor to land degradation in arid regions.

The most obvious physical impacts of ORV on vegetation include plant crushing, shearing, and uprooting. Such destruction of vegetation in arid ecosystems can lead to land degradation and desertification. Desert plant species exhibit varying degrees of vulnerability to vehicle use intensity, which results in changes in vegetation composition, height, biomass, reproductive structures, cover and seedbank.

(Sources: https://serc.carleton.edu/vignettes/collection/35397.html; https://www.sciencedirect.com/science/article/pii/S1319562X18301153)

I also notice that many locals and tourists park their vehicles on the shorelines which are inhabited by indigenous plants and animals of all varieties.  This too should be lightly regulated through education or ordinances so that leaky old (or new) vehicles do not stain the natural shorelines that not only belong to us but to our grandchildren’s grandchildren as well.  We need to educate people to be more responsible and not disrupt the natural world with our cars , especially when it can be easily avoided with very little cost impact to the planning of the island.

Stormwater

Following up on vehicle management along the shorelines, another thing I noticed was stormwater runoff; which is not much but should be managed now to avoid a small accumulation over time.  It is still early enough to employ best practices and manage any future problems by building a robust infrastructure now before things get worse.  Because the island is so small it looks like much of the run off drains directly into the ocean.  Following best practices will ensure that the clear waters stay that way long into the future for the benefit and enjoyment of future generations.

Circumstances alone should prompt islanders to manage stormwater runoff:

  • Traditional community boundaries often centered on natural drainages (e.g., Hawaiian ahupua’a and Samoan village structure), so residents are aware of how land use changes can affect watershed hydrology.
  • Local economies rely on clear waters, healthy reefs, and robust fisheries; thus, BMPs designed to eliminate sediment plumes offer immediate, visible results to resource users.
  • In some locations, rainfall is the primary source of freshwater, so using BMPs like cisterns or storage chambers to collect runoff for potable and non-potable reuse makes water supply sense.
  • Tropical vegetation is fast-growing and plays a huge part in the water cycle, so stormwater management approaches that take advantage of canopy interception and evapotranspiration to reduce runoff have a high chance of success.
  • Island infrastructure is subject to big storms, rising seas, and tsunamis; therefore redundancy within the stormwater system improves resiliency.

Things that should be considered as the island faces increased development includes the engagement of “low impact development” which is an approach to land development that meets the following conditions:

  1. Avoids disturbance of existing vegetation, valuable soils, and wetlands to the maximum extent possible (e.g., minimizing site disturbance and maintaining vegetated buffers along waterways);
  2. Reduces the amount of impervious cover and, thus, stormwater runoff generated on a site through careful site planning and design techniques; and
  3. Manages runoff that is generated through structural and non-structural practices that filter, recharge, reuse, or otherwise reduce runoff from the site.

(Source: https://horsleywitten.com/pdf/Feb2014_IslandBMPGuide_wAppendix.pdf)

Desalinization

Tasked with providing water for a population which more than quadruples with tourists throughout the year, the Caribbean island of Aruba is building a new 24,000 m3/day (6,340,130 gallons) desalination facility to process seawater from beach wells. Paul Choules & Ron Sebek discuss technical details of the installation, set to replace older thermal desalination units.

This is so awesome and could become a really great way for Aruba to expand its market into other emerging countries that are facing water issues.  Abruba could use its extensive knowledge to help other arid climates deal with lack of drinking water, taking Aruba to the next level as a global leader in this realm.

(Source: https://www.waterworld.com/international/desalination/article/16201943/desalination-plant-profile-aruba-the-pearl-of-the-caribbean)

Cogeneration of Power

Justin Locke is director of the island energy program at the Carbon War Room, an international nonprofit. He said it makes sense for islands to switch to clean power.

“Islands currently pay some of the highest electricity prices in the world. At the same time, they also have some of the best renewable energy resources,” added Locke. Aruba’s plan includes building new solar and wind farms, converting waste to energy, and working to increase energy efficiency.

Aruba has set the ambitious goal of becoming the first green economy by transitioning to 100% renewable energy use. Currently, Aruba is at 20% renewable energy use.

Aruba is known for being sunny all year long and its cooling trade winds. By capitalizing on these natural resources, the island can generate renewable energy. The island is lowering its dependence on heavy fuel oil, lowering CO2 emissions, and reducing environmental pollution.

By steadily continuing its momentum with its green movement and implementing cogeneration of power production it will help the island become sustainable and resilient.

(Source: https://www.netherlandsandyou.nl/your-country-and-the-netherlands/united-states/about-us/aruba-and-you/sustainability-in-aruba)

Conclusion

Although Aruba has promised to become green it is not absolutely clear that it will be able to achieve its aggressive 2020 goals.  However, the future is bright if Aruba is able to continue on its path and starts to take these issues into greater consideration making it a premier destination for people to enjoy.  Becoming the world’s greenest island will ensure that tourism continues to flourish and that the country will continue to thrive in an environmentally-friendly way that will help restore and maintain the attributes that has made it what it has become famous for – a place for people from all over the world to come and enjoy the natural world away from the hustle and bustle of city life and experience the world in a way that seems to be reminiscent of a simpler time and offers us a chance to connect with something much larger than ourselves.  As temporary stewards for the environment it is up to us to protect that which does not belong to us so that future generations can also appreciate these valuable experiences.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


CELS Earns Honorable Mention Among @USGBCNJ Gala Award Winners – 2019

NEWS – The U.S. Green Building Council New Jersey Chapter (USGBC NJ) celebrated nine New Jersey-based projects at its Annual Awards Gala. The Gala took place on Wednesday, May 22, 2019 at the LEED registered Hyatt Regency, New Brunswick, NJ.

Each year, USGBC NJ recognizes and presents these distinguished awards to companies and individuals that have demonstrated outstanding achievement and best practices in green building and sustainability.

“The Annual Awards Gala is a stellar event,” said USGBC NJ Board Chair Daniel Topping, Principal with NK Architects. “It is our opportunity to celebrate innovative green New Jersey projects, while networking and financially supporting the mission of USGBC NJ. This year’s winners are exciting and inspiring. They range from corporate campuses, higher education facilities, sustainably built residential projects, a comprehensive green cleaning initiative and an urban resiliency park.”

This year, USGBC NJ’s Gala celebrated the following Award Winners (click for list of winners).

Honorable Mention

Included as an honorable mention was the Center for Environmental and Life Sciences (CELS) facility, a 107,500 square foot, LEED® Gold–certified science facility devoted to environmental and pharmaceutical life sciences research.  CELS enables Montclair State University’s College of Science and Mathematics (CSAM) to build on its collaborative culture combining strengths across disciplines and building research programs of exceptional power. In the process, Montclair State University demonstrates that it can make a large impact on the advancement of science and technology, especially in the sustainable use of natural resources and improved human health. The building comprises of a comprehensive array of laboratories, seminar rooms, classrooms, and other facilities that enable collaborative transdisciplinary research in the pharmaceutical life sciences and environmental sciences. It joins three existing science buildings around a “learning and discovery landscape” to give science research a high-visibility position on the campus.

The Project Team

  • Montclair State University Project Manager: Frank Cunha III, AIA
  • Architect of Record: The S/L/A/M Collaborative, Inc.
  • Engineer of Record: Vanderweil Engineers
  • Contractor: Terminal Construction Corporation
  • LEED Consultant: Green Building Center – New Jersey
  • Commissioning Agent: NORESCO

Some of the LEED-specific features include:

  • Both bus and rail transportation options within a half-mile walking distance.
  • The building is situated on an area that was previously developed.
  • The site is near to basic services such as places of worship, a convenience store, day care center, library, park, police department, school, restaurants, theaters, community center, fitness center, and museums.
  • A green roof with sedum mats is located above the second floor. This absorbs stormwater, restores habitat, adds insulation to the building roof, and provides a scenic study site and retreat for building occupants.
  • Exterior landscaping includes water efficient plantings and two rain gardens in front of the building.
  • A 35 percent reduction of water use in flush & flow fixtures.
  • Separate collection of refuse and recyclables with color-coded storage containers to avoid contamination of the waste stream.
  • Smoking is prohibited in the building and within 25 feet of entries, outdoor intakes and operable windows.
  • The building is mechanically ventilated with CO2 sensors programmed to generate an alarm when the conditions vary by 10 percent or more from the design value.
  • The design outdoor air intake flow for all zones is 30 percent greater than the minimum outdoor air ventilation rate required by ASHRAE Standard 62.1-2007, Ventilation Rate Procedure.
  • Lighting controls include scene controllers and occupancy sensors for classrooms, conference rooms and open plan workstations, with task lighting provided.

Further reading about the facility:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


University Architect @FrankCunhaIII Earns #ExecutiveMBA from @BizFeliciano at @MontclairStateU

On May 21, 2019, Frank Cunha III, graduated from the Executive Masters in Business Administration program at Montclair State University, where he has served the students as an outside consultant from 2001-2007 and as an employee in the Facilities department since 2007. Most recently Frank has served as the University Architect at the institution which is the second largest public university in the state.

Frank Cunha III, University Architect, has been with the University Facilities team since 2007. Since graduating from the New Jersey Institute of Technology School of Architecture in 1998, he has obtained licenses to practice architecture in 9 states. 

Frank is passionate about strategic planning, architectural design and constructing of complex projects in a challenging and ever changing environment. He considers the environment, energy, and the health and wellness of the occupants during all phases of the project while addressing the programming needs to ensure the stakeholder’s program requirements are met and align with the organization’s mission, vision and values. 

Frank has led various teams over the past 20-years, both with the American Institute of Architects, serving on local, state and national level committees; he has worked on various charity projects over the years; Through collaboration and enhancement of his expertise as a Registered Architect through practice, research and innovation he has dedicated his life to serving others. 

With the assistance of his design and construction teams, Frank has been responsible for many projects of various size and scope around campus. Some project highlights include: Student Recreation Center, Center for Environmental Life Sciences, Cali School of Music, School of Nursing, the Center for Computing and Information Science, Sinatra Hall, School of Business, Schmitt Hall and historic renovation and addition to College Hall, to name a few.  Click Here for more information.


University Architect @FrankCunhaIII Leads Architectural Walking Tour of @MontclairStateU’s Campus for Architect Guests, @AIANJ AIA Newark Suburban #AIA #University #Architect

On May 18th, AIA Newark Suburban held a campus walking tour of Montclair State University led by fellow member, Architect Frank Cunha III, AIA.  The tour addressed the history of the campus and the way it has been designed and constructed to protect and promote the health, safety, and welfare of the occupants of the buildings and grounds.

Building on a distinguished history dating back to 1908, Montclair State University is a leading institution of higher education in New Jersey.  Designated a Research Doctoral University by the Carnegie Classification of Institutions of Higher Education, the University’s 11 colleges and schools serve more than 21,000 undergraduate and graduate students with more than 300 doctoral, master’s and baccalaureate programs. Situated on a beautiful, 252-acre suburban campus just 12 miles from New York City, Montclair State delivers the instructional and research resources of a large public university in a supportive, sophisticated and diverse academic environment. University Facilities currently manages 70 buildings and approximately 5 million gross square feet of space on our campus. More information available: https://www.montclair.edu/about-montclair

Frank Cunha III, AIA, University Architect, has been with the University Facilities team since 2007.  Since graduating from the New Jersey Institute of Technology School of Architecture in 1998, he has obtained licenses to practice architecture in 9 states.  Frank is currently completing his Masters in Business Administration at Montclair State University and expects to graduate in May 2019.

Frank is passionate about strategic planning, architectural design and constructing of complex projects in a challenging and ever-changing environment.  He considers the environment, energy, and the health and wellness of the occupants during all phases of the project while addressing the programming needs to ensure the stakeholder’s program requirements are met and align with the organization’s mission, vision and values.

With the assistance of his design and construction teams, Frank has been responsible for many projects of various size and scope around campus. Some project highlights include: Student Recreation Center, Center for Environmental Life Sciences, Cali School of Music, School of Nursing, the Center for Computing and Information Science, Sinatra Hall, School of Business, Schmitt Hall and historic renovation and addition to College Hall, to name a few.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Warning: Only you can make a difference – Global smog recorded at all time high by Mauna Loa Observatory #Environment #ThinkGreen #Eco #ilmaBlog

At the Mauna Loa Observatory in Hawaii, carbon dioxide levels were recorded at 415 parts per million last week. That is the highest level recorded there since it began such analyses in 1958. It’s also 100 parts per million higher than any point in the roughly 800,000 years for which scientists have data on global CO2. In other words, “levels of carbon dioxide in the atmosphere are now nearly 40 percent higher than ever in human history.” [Popular Science]

Governments of the world need to triple their current efforts to reduce greenhouse-gas emissions in order to prevent global warming of more than 2 °C by 2030, the United Nations Environment Programme (UNEP) said in its annual “emissions gap” report (Nov 27, 2018).

Drawdown Emissions – Big Ideas

Some “big think” solutions for CO2 gas emissions reduction can be found at the Drawdown website. These recommendations have been identified and ranked using an objective scientific method. Many of these ideas require engineering and scientific solutions, therefore, we offer the following as methods that you can get started today in doing your part towards reducing the emissions of C02.

Ten Ways to Reduce Greenhouse Gases – Start Small

Burning fossil fuels such as natural gas, coal, oil and gasoline raises the level of carbon dioxide in the atmosphere, and carbon dioxide is a major contributor to the greenhouse effect and global warming. You can help to reduce the demand for fossil fuels, which in turn reduces global warming, by using energy more wisely. 

The following is a list of 10 steps YOU can take to reduce greenhouse gas emissions:

  1. Reduce, Reuse, Recycle
  2. Use Less Heat and Air Conditioning
  3. Replace Your Light Bulbs
  4. Drive Less and Drive Smart
  5. Buy Energy-Efficient Products
  6. Use Less Hot Water
  7. Use the “Off” Switch
  8. Plant a Tree          
  9. Get a Report Card from Your Utility Company
  10. Encourage Others to Conserve

These 10 steps found at this website will take you a long way toward reducing your energy use and saving you money. Less energy use means less dependence on the fossil fuels that create greenhouse gases and contribute to global warming.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Ask the Architect: Why Does Indoor Air Quality Matter?#LEED #WELL #Health #Wellness #Safety #Architect #ilmaBlog

Simply put, indoor air quality matters because human beings are spending more and more time indoors. It is becoming more important than ever to make sure that the buildings that we design, construct and occupy are suitable and safe for the occupants. The following article will draw on both research and experience in the design and construction of high performance buildings to help elaborate on this simple response.

Interesting Facts To Consider About Indoor Air Quality:

  • Indoor air often contains 4X to 10X the amount of pollutants of outdoor air.
  • Many studies have linked exposure to small particles (PM 2.5—defined as airborne particles smaller than 2.5 microns) with heart attacks, cardiac arrhythmias, strokes, chronic obstructive pulmonary disease, worsened symptoms of asthma, and an increased risk of respiratory illness.
  • The World Health Organization says that particulate matter contributes to about 800,000 premature deaths each year, making it the 13th leading cause of death worldwide.

The built environment around us plays a fundamental role in our overall well-being, particularly the indoor spaces that we inhabit to live, work, learn, play and pray, since most of us spend about 90% of our time indoors.  The buildings that we as Architects design and construct have a distinctive capability to positively or negatively impact our health and wellbeing. The air that we breathe inside a building can have a greater consequence on our health.  Unfortunately, many contaminants are not visible in the air, so we might not know that they are there.  Inhaling air or poor quality can lead to a number of health conditions, including but not limited to:  allergies, respiratory disorders, headaches, sore throat, lethargy and nausea.

Sick Building Syndrome

According to the EPA, sick building syndrome (SBS) is used to describe a situation in which the occupants of a building experience acute health- or comfort-related effects that seem to be linked directly to the time spent in the building. No specific illness or cause can be identified. The complainants may be localized in a particular room or zone or may be widespread throughout the building.

LEED Requirements

As more buildings are LEED certified, here are some things to consider about your next project:

To contribute to the comfort and well-being of building occupants by establishing minimum standards for indoor air quality (IAQ) after construction and during occupancy, USGBC LEED v4 requires that the project meet one of the following:

  • Minimum indoor air quality performance: Option 1. ASHRAE Standard 62.1–2010 or Option 2. CEN Standards EN 15251–2007 and EN 13779–2007.
  • Indoor air quality assessment: Path 1 Option 1. Flush-out, or Path 2. Option 1. During occupancy, or Path 2. Option 2. Air testing – Note: these cannot be combined.

Occupants are increasingly paying more attention to the conditions of their work environment as it relates to health and wellness. This is especially the case for researchers and their lab environments. We see surging growth in universities adopting lab design programs such as Smart Labs which places an emphasis in the indoor environment quality of the lab and through certification programs as:

We need to have a real-time measurement of the all contaminants of inside air and match that with real time control of the outside air coming into the environment. Ideally, we need to design and build facilities that:

  • Bring in lots of outside air—but only exactly where and when we need it.
  • Measures and controls more than just temperature and CO2.
  • Displays the ventilation performance for the building’s occupants.

Health and Cognitive FunctionPerformance Enhancements

Cognitive functions encompass reasoning, memory, attention, and language and lead directly to the attainment of information and, thus, knowledge. United Technologies and The Harvard School of Public Health prepared a study that was designed to simulate indoor environmental quality conditions in green and conventional buildings and evaluate the impacts on an objective measure of human performance—cognitive function.  The findings of the report concluded that the impact of the indoor air quality on the productivity of the occupants which revealed the following benefits:

  • Lowering the levels of CO2 and VOCs resulted in their participants scoring 61% higher on cognitive function tests compared with those in conventional offices.
  • There was a 101% improvement on their cognitive function tests when the ventilation levels were doubled above the standard ASHRAE prescribed levels.
  • Information usage scores were 299% higher than conventional offices when the ventilation rates were doubled.

The conclusion of this study is very clear: verified ventilation performance will increase employee and student performance.

Sources & References:

Is Your Building Ventilated Like It’s 1978? By Tom Kolsun

USGBC V4 Requirements for indoor environmental quality

Further Reading:

EPA – An Office Building Occupants Guide to Indoor Air Quality

#IAQmatters

EPA – Indoor Air Quality

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

For More Questions and Answers please check out:
Architects @WJMArchitect And @FrankCunhaIII Respond to ILMA Fan’s Questions “ASK THE ARCHITECT”

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


21 Improvements in Technology Architects Can Expect by 2030 #Innovation #Technology #ilmaBlog

  1. 90% of the population will have unlimited and free data storage.
  2. The first robotic pharmacist will arrive in the US.
  3. 1 trillion sensors will be connected to the internet.
  4. 10% of the world’s population will be wearing clothes connected to the internet.
  5. The first 3D printed car will be in production.
  6. The first implantable mobile phone will become commercially available.
  7. It is likely we will see more widespread adoption of implantable technologies emerge.
  8. The first government to replace its census with big-data technologies.
  9. 10% of reading glasses will be connected to the internet.
  10. 80% of people on earth will have a digital presence online.
  11. A government will collect taxes for the first time via blockchain. 10% of global gross domestic product will be stored using blockchain technology.
  12. 90% of the global population will have a supercomputer in their pocket.
  13. Access to the Internet will become a basic right.
  14. The first transplant of a 3D printed liver will occur.
  15. More than 50% of Internet traffic to homes will be from appliances and device.
  16. 5% of consumer products will be 3D printed.
  17. 30% of corporate audits will be performed by artificial intelligence.
  18. AI will increasingly replace a range of jobs performed by people today, including white collar jobs.
  19. Globally, more trips will be made using car sharing programs than privately owned cars. Driverless cars will account for 10% of all cars in the US.
  20. The first AI machine will join a corporate board of directors.
  21. The first city with more than 50,000 people and no traffic lights will come into existence.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Bring Your Children to Work Day at @MontclairStateU #ArchWeek19 #CitizenArchitect #BlueprintForBetter #ilmaBlog #Architecture #UniversityArchitect

Brief Announcement
On April 25th, Frank Cunha III & Michael Chiappa participated in a Bring Your Children to Work Day at MSU where we were able to teach the children about architecture, planning, design and construction. We showed them the old ways, the current ways and the future ways that architects envision projects and help build the world around us.

About Bring Your Children to Work Day
National Take Our Daughters and Sons to Work Day is recognized on the fourth Thursday in April each year. This annual event is an educational program in the United States and Canada where parents take their children to work with them for one day.

Presentation
The following is the slideshow we presented to the children:

About the Event
This year some of the parents decided to focus on STEM and what it means to be an Architect….a profession that is both creative and artistic, yet methodical and scientific. We explored what it means to be an Architect and other STEM fields and how anyone, regardless of gender, race, religion or ethnicity can aspire to do great things. Architecture is just one of many pathways where we can lead through change and technology. We looked at old blue prints, 3-D modeling, 3-D printing, building materials, using our original 1908 building (College Hall) for context in describing the process and all of the wonderful people that it takes to conceive of a project — We looked at interior design and site design as part of the overall architectural design of a campus. We emphasized, that although not all the children will decide to become architects, it is important to understand what architects do and how to understand how we think and how/what we do. We all need to learn from each other and work as a team to get things done. It was exciting to see the children work with the campus hand on when we had them work on an interactive puzzle of the campus. One of the students said: ” The campus is like a small city.” It was really fulfilling to see that she understood that the university is like a small city. It felt great to make an impact and promote architecture to young children.

Coincidentally, Architecture Week is held every April as part of the American Institute of Architects (AIA) nationwide celebration of our built environment, so that made the day even more special to me.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Will Higher Education Look Like 5, 10 or 20 Years From Now? Some Ways Colleges Can Reinvent Themselves #iLMA #eMBA #Innovation #Technology #Planning #Design #HigherEducation #HigherEd2030 #University #Architect

Introduction

Change is a natural and expected part of running a successful organization. Whether big or small, strategic pivots need to be carefully planned and well-timed. But, how do you know when your organization is ready to evolve to its next phase? Anyone that listens, watches, or reads the news knows about the rising cost of higher education and the increasing debt that education is putting on students and alumni and their families.

At a time when education is most important to keep up with increasing technological changes, institutions need to pivot or face imminent doom in an ever increasing competitive environment. Competition can come from startups or external factors in the higher education market therefore it is increasingly necessary for institutions of higher learning to take a different approach to their business operations.

This post will focus on:

  • Current Trends
  • Demographic Shifts
  • Future of Higher Education (and impacts on University Facilities & Management)
    • Changing Assumptions
    • Implications for the Physical Campus
    • Changing Trajectory
    • More Trends in Higher Education (Towards 2030)
  • Driving Technologies
  • External Forces

Current Trends

  • Online education[i] has become an increasingly accepted option, especially when “stackable” into degrees.
  • Competency-based education lowers costs and reduces completion time for students.
  • Income Share Agreements[ii] help students reduce the risk associated with student loans.
  • Online Program Manager organizations benefit both universities and nontraditional, working-adult students.
  • Enterprise training companies are filling the skills gap by working directly with employers.
  • Pathway programs facilitate increasing transnational education[iii], which serves as an additional revenue stream for universities.

Demographic Shifts

According to data from the National Clearinghouse and the Department of Education[iv]:

  • The Average Age of a College/University Student Hovers Around Twenty-Seven (Though That Is Decreasing as The Economy Heats Up)
  • 38% of Students Who Enrolled In 2011 Transferred Credits Between Different Institutions At Least Once Within Six Years.
  • 38% of Students Are Enrolled Part-Time.
  • 64% of Students Are Working Either Full-Time or Part-Time.
  • 28% of Students Have Children of Their Own or Care For Dependent Family Members.
  • 32% of Students Are from Low-Income Families.
  • The Secondary Education Experience Has an Increasingly High Variation, Resulting In Students Whose Preparation For College-Level Work Varies Greatly.

Future of Higher Education (and impacts on University Facilities & Management)

The future of higher education depends on innovation. 

University leaders who would risk dual transformation are required to exercise full commitment to multiple, potentially conflicting visions of the future. They undoubtedly confront skepticism, resistance, and inertia, which may sway them from pursuing overdue reforms.[v]

Change is upon us.

“All universities are very much struggling to answer the question of: What does [digitization[vi]] mean, and as technology rapidly changes, how can we leverage it?” . . . . Colleges afraid of asking that question do so at their own peril.”[vii]

James Soto Antony, the director of the higher-education program at Harvard’s graduate school of education.

Changing Assumptions

Until recently the need for a physical campus was based on several assumptions:

  • Physical Class Time Was Required
  • Meaningful Exchanges Occurred Face to Face
  • The Value of an Institution Was Tied to a Specific Geography
  • Books Were on Paper
  • An Undergraduate Degree Required Eight Semesters
  • Research Required Specialized Locations
  • Interactions Among Students and Faculty Were Synchronous

Implications for the Physical Campus

  • Learning – Course by course, pedagogy is being rethought to exploit the flexibility and placelessness of digital formats while maximizing the value of class time.
  • Libraries – Libraries are finding the need to provide more usable space for students and faculty.  Whether engaged in study, research or course projects, the campus community continues to migrate back to the library.
  • Offices – While the rest of North America has moved to mobile devices and shared workspaces, academic organizations tend to be locked into the private, fixed office arrangement of an earlier era – little changed from a time without web browsers and cell phones. 
  • Digital Visible – From an institutional perspective, many of the implications of digital transformation are difficult to see, lost in a thicket of business issues presenting themselves with increasing urgency. 

Changing Trajectory

University presidents and provosts are always faced with the choice of staying the course or modifying the trajectory of their institutions.  Due to failing business models, rapidly evolving digital competition and declining public support, the stakes are rising.  All should be asking how they should think about the campus built for the 21st century.[viii]  J. Michael Haggans[ix] makes the following recommendations:

  • Build no net additional square feet
  • Upgrade the best; get rid of the rest
  • Manage space and time; rethink capacity
  • Right-size the whole
  • Take sustainable action
  • Make campus matter

More Trends in Higher Education (Towards 2030)

  • The Rise of The Mega-University[x]
  • ; Public Private Partnerships (P3’s) Procurement Procedures Will Become More Prevalent
  • More Colleges Will Adopt Test-Optional Admissions
  • Social Mobility Will Matter More in College Rankings
  • Urban Colleges Will Expand[xi] — But Carefully
  • Financial Crunches Will Force More Colleges to Merge
  • The Traditional Textbook Will Be Hard to Find; Free and Open Textbooks
  • More Unbundling and Micro-Credentials
  • Continued Focus on Accelerating Mobile Apps
  • Re-Imagining Physical Campus Space in Response to New Teaching Delivery Methods
  • Transforming the Campus into A Strategic Asset with Technology
  • Education Facilities Become Environmental Innovators
  • Ethics and Inclusion: Designing for The AI Future We Want to Live In
  • Visibility (Transparency) And Connectedness
  • Sustainability from Multiple Perspectives
  • Better Customer Experiences with The Digital Supply Chain
  • Individualized Learning Design, Personalized Adaptive Learning
  • Stackable Learning Accreditation
  • Increased Personalization: More Competency-Based Education They’ll Allow Students to Master A Skill or Competency at Their Own Pace.
  • Adaptation to Workplace Needs They’ll Adapt Coursework to Meet Employer Needs for Workforce Expertise
  • Greater Affordability and Accessibility They’ll Position Educational Programs to Support Greater Availability.
  • More Hybrid Degrees[xii]
  • More Certificates and Badges, For Example: Micro-Certificates, Offer Shorter, More Compact Programs to Provide Needed Knowledge and Skills Fast[xiii]
  • Increased Sustainable Facilities – Environmental Issues Will Become Even More Important Due to Regulations and Social Awareness; Reduced Energy Costs, Water Conservation, Less Waste
  • Health & Wellness – Physical, Spiritual and Metal Wellbeing
  • Diversity and Inclusion Will Increase
  • Rise of The Micro-Campus[xiv] And Shared Campuses[xv]
  • E-Advising to Help Students Graduate
  • Evidence-Based Pedagogy
  • The Decline of The Lone-Eagle Teaching Approach (More Collaboration)
  • Optimized Class Time (70% Online, 30% Face to Face)
  • Easier Educational Transitions
  • Fewer Large Lecture Classes
  • Increased Competency-Based and Prior-Learning Credits (Credit for Moocs or From “Real World” Experience)[xvi]
  • Data-Driven Instruction
  • Aggressive Pursuit of New Revenue
  • Online and Low-Residency Degrees at Flagships
  • Deliberate Innovation, Lifetime Education[xvii]
  • The Architecture of The Residential Campus Will Evolve to Support the Future.
  • Spaces Will Be Upgraded to Try to Keep Up with Changes That Would Build In Heavy Online Usage.
  • Spaces Will Be Transformed and Likely Resemble Large Centralized, Integrated Laboratory Type Spaces. 
  • Living-Learning Spaces in Combination Will Grow, But On Some Campuses, Perhaps Not In The Traditional Way That We Have Thought About Living-Learning To Date.

Driving Technologies:

  • Emerging Technologies – Such as Augmented Reality, Virtual Reality, And Artificial Intelligence – Will Eventually Shape What the Physical Campus Of The Future Will Look Like, But Not Replace It.[xviii]
  • Mobile Digital Transformation[xix]
  • Smart Buildings and Smart Cities[xx]
  • Internet of Things
  • Artificial Intelligence (AI), Including Natural Language Processing
  • Automation (Maintenance and Transportation Vehicles, Instructors, What Else?)
  • Virtual Experience Labs, Including: Augmented Reality, Virtual Reality Learning, And Robotic Telepresence 
  • More Technology Instruction and Curricula Will Feature Digital Tools and Media Even More Prominently
  • New Frontiers For E-Learning, For Example, Blurred Modalities (Expect Online and Traditional Face-To-Face Learning to Merge)[xxi]
  • Blending the Traditional; The Internet Will Play Bigger Role in Learning
  • Big Data: Colleges Will Hone Data Use to Improve Outcomes

External Forces:

  • [xxii]: Corporate Learning Is A Freshly Lucrative Market
  • Students and Families Will Focus More on College Return On Investment, Affordability And Student Loan Debt
  • [xxiii]
  • Greater Accountability; Schools will be more accountable to students and graduates
  • Labor Market Shifts and the Rise of Automation
  • Economic Shifts and Moves Toward Emerging Markets
  • Growing Disconnect Between Employer Demands and College Experience 
  • The Growth in Urbanization and A Shift Toward Cities 
  • Restricted Immigration Policies and Student Mobility
  • Lack of Supply but Growth in Demand
  • The Rise in Non-Traditional Students 
  • Dwindling Budgets for Institutions[xxiv]
  • Complex Thinking Required Will Seek to Be Vehicles of Societal Transformation, Preparing Students to Solve Complex Global Issues

Sources & References:


[i] Online education is a flexible instructional delivery system that encompasses any kind of learning that takes place via the Internet. The quantity of distance learning and online degrees in most disciplines is large and increasing rapidly.

[ii] An Income Share Agreement (or ISA) is a financial structure in which an individual or organization provides something of value (often a fixed amount of money) to a recipient who, in exchange, agrees to pay back a percentage of their income for a fixed number of years.

[iii] Transnational education (TNE) is education delivered in a country other than the country in which the awarding institution is based, i.e., students based in country Y studying for a degree from a university in country Z.

[iv] Article accessed on April 16, 2019: https://er.educause.edu/articles/2019/3/changing-demographics-and-digital-transformation

[v]Article accessed on April 16, 2019: https://ssir.org/articles/entry/design_thinking_for_higher_education

[vi] Digitization is the process of changing from analog to digital form.

[vii] Article accessed on April 16, 2019:  https://qz.com/1070119/the-future-of-the-university-is-in-the-air-and-in-the-cloud

[viii] Article accessed on April 16, 2019: http://c21u.gatech.edu/blog/future-campus-digital-world

[ix] Michael Haggans is a Visiting Scholar in the College of Design at the University of Minnesota and Visiting Professor in the Center for 21st Century Universities at Georgia Institute of Technology.  He is a licensed architect with a Masters of Architecture from the State University of New York at Buffalo.  He has led architectural practices serving campuses in the US and Canada, and was University Architect for the University of Missouri System and University of Arizona.

[x] Article accessed on April 16, 2019:  https://www.chronicle.com/interactives/Trend19-MegaU-Main

[xi] Article accessed on April 16, 2019:  https://www.lincolninst.edu/sites/default/files/pubfiles/1285_wiewel_final.pdf

[xii] Article accessed on April 16, 2019: https://www.fastcompany.com/3046299/this-is-the-future-of-college

[xiii] Article accessed on April 16, 2019: https://www.govtech.com/education/higher-ed/Why-Micro-Credentials-Universities.html

[xiv] Article accessed on April 16, 2019: https://global.arizona.edu/micro-campus

[xv] Article accessed on April 16, 2019: https://evolllution.com/revenue-streams/global_learning/a-new-global-model-the-micro-campus

[xvi] Article accessed on April 16, 2019:  https://www.chronicle.com/article/The-Future-Is-Now-15/140479

[xvii] Article accessed on April 16, 2019:  https://evolllution.com/revenue-streams/market_opportunities/looking-to-2040-anticipating-the-future-of-higher-education

[xviii] Article accessed on April 16, 2019: https://www.eypae.com/publication/2017/future-college-campus

[xix] Article accessed on April 16, 2019: https://edtechmagazine.com/higher/article/2019/02/digital-transformation-quest-rethink-campus-operations

[xx] Article accessed on April 16, 2019: https://ilovemyarchitect.com/?s=smart+buildings

[xxi] Article accessed on April 16, 2019: https://www.theatlantic.com/education/archive/2018/04/college-online-degree-blended-learning/557642

[xxii] Article accessed on April 16, 2019: https://qz.com/1191619/amazon-is-becoming-its-own-university

[xxiii] Article accessed on April 16, 2019: https://www.fastcompany.com/3029109/5-bold-predictions-for-the-future-of-higher-education

[xxiv] Article accessed on April 16, 2019: https://www.acenet.edu/the-presidency/columns-and-features/Pages/state-funding-a-race-to-the-bottom.aspx

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What About Public Private Partnerships? #ilmaBlog #HigherEducation #P3 #PPP #University #Architect

Example of Stakeholder Team (Source: Servitas)

Background on Public Private Partnerships (P3’s):

Many institutions of higher education are facing mounting pressure on their mission to deliver high-quality, affordable education to students and perform world-class research. Reductions in public funding support and concerns about overall affordability present substantial near-term and longer-term budget challenges for many institutions.

Public institutions are predominantly affected, having been constrained by suspensions or reductions in state funding. State appropriations across the US grew by just 0.5% annually between 2005 and 2015. State funding has still not recovered to 2008 levels, the last year in which state funding decisions would not have been affected by the Great Recession.

(Source: Integrated Postsecondary Education Data System (IPEDS) — state appropriations revenue divided by total fall enrollment, 2005–15)

Public-private partnership models are continuing to proliferate as cash-strapped colleges and universities seek to replace or update aging and outdated infrastructure amid tight finances.

(Source: Proliferating Partnerships)

What is the P3 Delivery Model?

A public-private partnership, or P3, is long-term agreement between a public entity and a private industry team that is tasked with designing, building, financing, operating and maintaining a public facility. The past decade has seen a steady increase in the use of P3 structures, both inside and outside higher education. In 2016, something of a watershed year for P3, multiple high-profile projects came online in response to a variety of public needs, including a $1-billion-plus water infrastructure project servicing San Antonio, and a $300-million-plus renovation of the Denver International Airport’s Great Hall.

(Source: A Few Lessons About Public-Private Partnerships)

“Public” is a non-profit institutional or governmental entity that engages a “private” for-profit entity to pay for a particular project.

The “private” partner provides funding (and often expertise) to deliver (and often operate) the project used by the “public” entity to meet its purposes.

In return for its capital, the “private” entity gets a revenue flow from the asset it has paid for.

(Source: Should your University enter into a Public/Private Partnership – the Pro’s and Con’s)

The emergence of the P3 option is happening where it matters most: projects that would be otherwise unattainable under the traditional public-improvement delivery models. For instance, 10 years ago, only a handful of higher education P3 projects were up and running; today, we are approaching three dozen such projects.

The biggest challenge is, of course, the financing component, but P3 teams bring much more to the table than money — they give public entities access to expertise and innovation that can add significant value to projects at each phase of development.

(Source: A Few Lessons About Public-Private Partnerships)

Motivations for P3 transactions vary widely, but include:

  • Supplementing traditional debt instruments. These include private capital, using off balance sheet or alternative mechanisms.
  • Transfer of risk. Historically, universities have born all or most of the risk of facilities-related projects themselves. A P3 is a way to either transfer or at least share the risk.
  • Speed and efficiency. A P3 allows for a faster development process, and time to completion is generally shorter and on schedule. The sole focus of the private entity is to complete the project on budget and on time. University infrastructure tends to have competing priorities across all-campus facility needs.
  • Outsourcing provision of non-core assets. Outsourcing allows institutions to focus investment of internal resources and capabilities on those functions that are closer to the academic needs of its students.
  • Experience. Private partners often have much more experience and skills in a particular development area (e.g., facility architecture and infrastructure, student housing needs) and are able to better accommodate the needs of students, faculty, administrators, etc.
  • Planning and budgeting. Private partners offer experience and know-how in long-term maintenance planning and whole life cycle budgeting.

(Source: Public-private partnerships in higher education What is right for your institution?)

The four types of P3s:

  • Operating contract/management agreement. Short- to medium-term contract with private firm for operating services
  • Ground lease/facility lease. Long-term lease with private developer who commits to construct, operate and maintain the project
  • Availability payment concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for annual payments subject to abatement for nonperformance
  • Demand-risk concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for rights to collect revenues related to the project

Pro’s and Con’s of P3’s:

Since their emergence in student housing several years ago, P3s have become important strategies for higher education institutions because of the many benefits they offer, including:

  • Lower developer costs
  • Developer expertise
  • Operational expertise
  • Access to capital
  • Preservation of debt capacity
  • More favorable balance sheets and credit statements
  • Risk mitigation
  • Faster procurement and project delivery (It can typically take a university about 5 years to get a project built. With a P3, that process can be reduced to just 2 years. Additionally, P3s can save approximately 25% in costs compared to typical projects.)

Beyond the above, the indirect advantages of P3s in student housing are numerous, such as they:

  • Provide better housing for students
  • Expand campus capacity
  • Create high-quality facilities
  • Expand the tax base for both a city and county
  • Provide an economic boost to surrounding areas, which likely lead to private growth and other improvements

It is important to note that, while there are many benefits of P3s for higher education institutions, these agreements also have disadvantages that need to be considered, including:

  • High cost of capital
  • Reduced control for the university
  • Complexity of deals
  • Multi-party roles and responsibilities
  • Limitation on future university development

(Source: Student Housing A Hot Sector For Public-Private Partnerships)

A LOOK AHEAD

Where Are We Heading?

  • More political involvement and pressure to consider P3
  • Pre-development Risks – Many projects failing to close
  • Issues with Construction Pricing & Labor Shortages
  • An increasing number of developers are getting in the on-campus business; however, developers are being more strategic on which projects/procurements to respond to
  • Exploration of other sources of funds like tax credits, USDA, and opportunity zones
  • Shared governance continues to grow
  • Larger, more complex P3 projects including long term concessions, availability payment models, Key Performance Indicators (KPIs)
  • Bundling of Procurements (food, housing (including faculty), academic buildings, hotel, energy, facility maintenance, etc.)

Further Reading:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


THE SPIRIT OF CAMPUS DESIGN: A reflection on the words of Werner Sensbach #Campus #Planning #Design #University #Architect

Montclair State University
Photo Credit: Mike Peters

In 1991, Werner Sensbach, who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia, wrote a paper titled “Restoring the Values of Campus Architecture”. The paragraphs that follow were excerpted from that article. They seem particularly appropriate to Montclair State University as it looks at its present campus facilities and forward to the planning of future facilities on a piece of land of spectacular beauty.

Nearly two thousand years ago, the Roman architect Vitruvius wrote that architecture should provide firmness, commodity, and delight. It is the definition of “delight” that still troubles us today. This is especially so on college campuses. Many who try to give voice to what it is that brings delight in a building or an arrangement of buildings may mention the design, the placement on the site, the choice of building materials, the ornamentation, or the landscaping. But mostly it’s just a feeling, or a sense that things are arranged just right, or a sensation of pleasure that comes over us. So academics, like nearly everyone else, often are unsure when planning for new campus construction about what is likely to be delightful. Even though the United States has 3,400 colleges, while most other advanced nations only have a few dozen, we simply have not developed in the United States a sensibility, a vocabulary, a body of principles, an aesthetic for campus architecture.

That each campus should be an “academic village” was one of Thomas Jefferson’s finest architectural insights. Higher learning is an intensely personal enterprise, with young scholars working closely with other scholars, and students sharing and arguing about ideas, religious beliefs, unusual facts, and feelings. A human scale is imperative, a scale that enhances collegiality, friendships, collaborations on research.

I believe the style of the campus buildings is important, but style is not as important as the village-like atmosphere of all the buildings and their contained spaces. University leaders must insist that architects they hire design on a warm, human scale. Scale, not style, is the essential element in good campus design. Of course, if an inviting, charming campus enclosure can be combined with excellent, stylish buildings so much the better.

The third imperative for campus planners, the special aesthetic of campus architecture, or the element of delight, is the hardest to define. It is the residue that is left after you have walked through a college campus, a sense that you have been in a special place and some of its enchantment has rubbed off on you. It is what visitors feel as they enjoy the treasures along the Washington Mall, or others feel after leaving Carnegie Hall, Longwood Gardens in southeastern Pennsylvania, Chartres Cathedral, the Piazza San Marco in Venice, or the Grand Canyon.

On a college campus the delight is generated by private garden spaces in which to converse, by chapel bells at noon or on each hour, by gleaming white columns and grand stairways, by hushed library interiors, by shiny gymnasiums and emerald playing fields, by poster-filled dormitory suites, by a harmony of windows and roofs, and by flowering trees and diagonal paths across a huge lawn. The poet Schiller once said that a really good poem is like a soft click of a well-made box when it is being closed. A great campus infuses with that kind of satisfaction.

In my view, American’s colleges and universities—and especially their physical planners—need three things to become better architectural patrons. One is a renewed sense of the special purpose of campus architecture. A second is an unswerving devotion to human scale. The third is a sense of the uncommon and particular aesthetic—the delight—that a college or university campus demands.

A surprisingly large sector of the American public has conceded a special purpose to higher education. College campuses have provided a special place for those engaged in the earnest pursuit of basic or useful knowledge, for young people devoted to self-improvement, and for making the country smarter, wiser, more artful, and more able to deal with competitor nations.

Therefore, college and university campuses have a distinct and separate purpose, as distinct as the town hall and as separate as a dairy farm. For most students the four to seven years spent in academic pursuits on a university campus are not only an important period of maturing from adolescence to adulthood but also years of heightened sensory and creative ability, years when the powers of reasoning, feeling, ethical delineations, and aesthetic appreciation reach a degree of sharpness as never before. During college years, young minds absorb impressions that often last for a lifetime: unforgettable lectures, noisy athletic contests, quiet hours in a laboratory or library, jovial dormitory banter, black-robed commencements, encounters with persons of radically different views, the rustle of leaves, transfigured nights. The American college campus serves superbly as an example of Aristotle’s idea of a good urban community as a place “where people live a common life for a noble end.”

Montclair State University
Photo Credit: Mike Peters

No architect should be permitted to build for academe unless he or she fully appreciates that his or her building is an educational tool of sorts. New buildings should add to the academic ambiance and enrich the intellectual exchanges and solitary inquiries. They should never be a mere personal statement by the architect or a clever display of technical ingenuity or artistic fashion.

Campus facilities planners need to be sure that the architects they choose are able to incorporate surprise, touches of whimsy, elegance, rapture, and wonder into their constructions. This special campus aesthetic is definitely not a frill. It is what graduates remember decades after they have left the college, and what often prompts them to contribute money to perpetuate the delight. It is what captures high school juniors and their parents in their summer pilgrimages to numerous college campuses to select those two or three institutions to which they will apply.

I think the best way to preserve the particular values of the American college campus is through a three-pronged effort:

The first is to recognize that the village-like university campus is a unique American architectural creation. No other nation has adopted the “academic village” as an architectural and landscaping form, though the ancient Oxbridge colleges came close. Academic leaders should become more knowledgeable about the distinctiveness of their campus communities and more proud of and assertive about maintaining the values of this inventive form.

Second, universities should have a broadly representative and expert blue-ribbon committee to watch over all new construction, not leave it to the vice president for administration, a facilities planner, or a trustee committee. The campus environment should be guarded and enhanced as carefully as the quality of the faculty.

Third, each college and university should draw up a set of design guidelines to help it become a patron who can list what is essential in its campus architecture. These guidelines will differ from campus to campus, but nearly all institutions should include concern for the three fundamentals: academic purpose, human scale, and a special campus aesthetic. Architects can de- sign more effectively and sympathetically if they understand the expectations of the college.

Although these words were written in 1991, they remain true today as Montclair State University continues to grow its enrollment, academic programs, research programs…and the facilities that serve them.

Source: “Restoring the Values of Campus Architecture” by Werner Sensbach (who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia)

For a list of my projects: Click Here

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The Architect’s Role in Sustainable Design (and How to Use Technology & Innovation to Advance Our Green Agenda) #ilmaBlog #green #design #architecture

Background

In the design and construction field, there are two major categories of resources: renewable and non-renewable. As opposed to non-renewable resources, which are depleted with their constant use, renewable resources are not. If not managed properly Non-renewable resources might become non-existent when the rate at which they are used is much higher than the rate at which they are replaced. Renewable resources include water, geothermal energy and wind energy. Non-renewable resources include coal, natural gas and oil.  The demand for new construction is on the rise as the world’s population increases and the demand for newer, more efficient modern buildings also increase.

Architect’s Role

Because buildings account for so much energy to build and maintain, architects and designers have become very conscious about our role in minimizing our environmental footprint when we design buildings.  The American Institute of Architects, the largest organization of architects world-wide has a committee called the Committee on the Environment (COTE), which works to advance, disseminate, and advocate—to the profession, the building industry, the academy, and the public—design practices that integrate built and natural systems and enhance both the design quality and environmental performance of the built environment. COTE serves as the community and voice on behalf of AIA architects regarding sustainable design and building science and performance.

Bamboo

Renewable Resources

In green construction processes, there is an emphasis on the use of renewable resources. In many cases, this natural source becomes depleted much faster than it is able to replenish itself, therefore, it has become important that buildings make use of alternative water sources for heating, hot water and sewerage disposal throughout their life cycles, to reduce use and conserve water supplies.

Architects and designers specify rapidly renewable materials are those that regenerate more quickly than their level of demand. Our goal is to reduce the use and depletion of finite raw materials and long-cycle renewable materials by replacing them with rapidly renewable ones.  Some commonly specified rapidly renewable materials include cork, bamboo, cotton batt insulation, linoleum flooring, sunflower seed board panels, wheat-board cabinetry, wool carpeting, cork flooring, bio-based paints, geotextile fabrics such as coir and jute, soy-based insulation and form-release agent and straw bales. Some green building materials products are made of a merger of rapidly renewable materials and recycled content such as newsprint, cotton, soy-based materials, seed husks, etc.

Check out this ILMA article about “Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design” for more information on this topic.

Responsibility of Architects

Architects and designers who align with AIA’s COTE objectives, (1) recognize the value of their role in environmental leadership to advance the importance of sustainable design to the general public while incorporating sustainable design into their daily practice, (2) influence the direction of architectural education to place more emphasis on ecological literacy, sustainable design and building science, (3) communicate the AIA’s environmental and energy-related concerns to the public and private sectors and influence the decisions of the public, professionals, clients, and public officials on the impact of their environmental and energy-related decisions, (4) educate other architects on regulatory, performance, technical and building science issues and how those issues influence architecture, (5) educate the architectural profession on programming, designing, and managing building performance, (6) investigate and disseminate information regarding building performance best practices, criteria, measurement methods, planning tools, occupant-comfort, heat/air/moisture interfaces between the interior and exterior of buildings, (7) promote a more integrated practice in order to achieve environmentally and economically efficient buildings. One of the tools we will plan to promote to achieve this integration is Building Information Technology (BIM).

Smart-Building

The Role of Technology & Innovation – A Case Study (“The Edge”)

PLP Architecture and the Developer OVG Real Estate, built “The Edge” is a 430,556 SF (40,000m²) office building in the Zuidas business district in Amsterdam. It was designed for the global financial firm and main tenant, Deloitte. The project aimed to consolidate Deloitte’s employees from multiple buildings throughout the city into a single environment, and to create a ‘smart building’ to act as a catalyst for Deloitte’s transition into the digital age.

They key features of this building include the following innovations which address the environmental impact of building such a large edifice:

  • Each facade is uniquely detailed according to its orientation and purpose.
    • Load bearing walls to the south, east and west have smaller openings to provide thermal mass and shading, and solid openable panels for ventilation.
    • Louvers on the south facades are designed according to sun angles and provide additional shading for the office spaces, reducing solar heat gain.
    • Solar panels on the south facade provide enough sustainable electricity to power all smartphones, laptops and electric cars.
    • The North facades are highly transparent and use thicker glass to dampen noise from the motorway.
    • The Atrium façade is totally transparent, allowing views out over the dyke, and steady north light in.
  • The building’s Ethernet-powered LED lighting system is integrated with 30,000 sensors to continuously measure occupancy, movement, lighting levels, humidity and temperature, allowing it to automatically adjust energy use.
  • 65,000 SF of solar panels are located on the facades and roof, and remotely on the roofs of buildings of the University of Amsterdam – thereby making use of neighborhood level energy sourcing.
  • The atrium acts as a buffer between the workspace and the external environment. Excess ventilation air from the offices is used again to air condition the atrium space. The air is then ventilated back out through the top of the atrium where it passes through a heat exchanger to make use of any warmth.
  • Rain water is collected on the roof and used to flush toilets and irrigate the green terraces in the atrium and other garden areas surrounding the building.
  • Two thermal energy wells reach down to an aquifer, allowing thermal energy differentials to be stored deep underground.
  • In The Edge a new LED-lighting system has been co-developed with Philips. The Light over Ethernet (LoE) LED system is powered by Ethernet and 100% IP based. This makes the system (i.e. each luminaire individually) computer controllable, so that changes can be implemented quickly and easily without opening suspended ceilings. The luminaires are furthermore equipped with Philips’ ‘coded-light’ system allowing for a highly precise localization via smartphone down to 8 inches (20 cm) accuracy, much more precise than known WiFi or beacon systems.
  • Around 6,000 of these luminaires were placed in The Edge with every second luminaire being equipped with an additional multi-sensor to detect movement, light, infrared and temperature.
  • The Philips LoE LED system was used in all office spaces to reduce the energy requirement by around 50% compared to conventional TL-5 Lighting. Via the LoE system daily building use can be monitored. This data is fed to facility managers via the BMS allowing:
    • Remote insight into the presence of people in the building (anonymous). Heating, cooling, fresh air and lighting are fully IoT (Internet of Things) integrated and BMS controlled per 200 sqft based on occupancy – with zero occupancy there is next-to-zero energy use.
    • Predictions of occupancy at lunchtime based on real time historical data and traffic and weather information to avoid food-waste.
    • Unused rooms to be skipped for cleaning.
    • Managers to be alerted to lights that need replacing.
    • Notification of printers needing paper.
  • Every employee is connected to the building via an app on their smartphone. Using the app they can find parking spaces, free desks or other colleagues, report issues to the facilities team, or even navigate within the building.
  • Employees can customize the temperature and light levels anywhere they choose to work in the building via the mobile app. The app remembers how they like their coffee, and tracks their energy use so they’re aware of it.
  • The vast amount of data generated by the building’s digital systems and the mobile app on everything from energy use to working patterns, has huge potential for informing not only Deloitte’s own operations, but also our understanding of working environments as a whole. Discussions are currently ongoing regarding the future of this data and its use for research and knowledge transfer.
  • The green space that separates the building from the nearby motorway acts as an ecological corridor, allowing animals and insects cross the site safely.

Conclusion

Because buildings account for nearly 40 percent of global energy consumption, architects and designers have been working to impact the built environment in a positive way.  Although not every project can be as green as The Edge, by selecting materials that are renewable while reducing energy are two big contributions we can make to help ease the increasing demand for construction.

Technology can play a big part in our role to design more sustainable buildings through the use of building information modeling, energy management software, building management software, online sustainability calculators, energy modeling software, new lighting innovations, new techniques to capture and deliver energy and clean water while reducing waste, and mobile applications utilizing IoT.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook