New Campus Center at Springfield Technical Community College #UniversityArchitect #Rehabilitation #Community #College #Architecture #Transformation #ilmaBlog

All Photos: Chuck Choi

Combining historic preservation, adaptive reuse, and contemporary architecture, Springfield Technical Community College’s new Campus Center repurposes a 764-foot-long by 55-foot-wide warehouse building originally constructed between 1846 and 1864.

A major aspect of the Springfield, Massachusetts, University’s Campus Center is The Ira H. Rubenzahl Student Learning Commons. The Campus Center and Student Learning Commons consolidate academic services and student life activities under one roof. Corten steel canopies along the building’s facade distinguish new entrances into each hub.

Click Here to read the rest of the story.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The Architect’s Role in Sustainable Design (and How to Use Technology and Innovation to Advance Building Performance) #ilmaBlog #green #design #architecture #greenbuildings

Background

In the design and construction field, there are two major categories of resources: renewable and non-renewable. As opposed to non-renewable resources, which are depleted with their constant use, renewable resources are not. If not managed properly Non-renewable resources might become non-existent when the rate at which they are used is much higher than the rate at which they are replaced. Renewable resources include water, geothermal energy and wind energy. Non-renewable resources include coal, natural gas and oil.  The demand for new construction is on the rise as the world’s population increases and the demand for newer, more efficient modern buildings also increase.

Architect’s Role

Because buildings account for so much energy to build and maintain, architects and designers have become very conscious about our role in minimizing our environmental footprint when we design buildings.  The American Institute of Architects, the largest organization of architects world-wide has a committee called the Committee on the Environment (COTE), which works to advance, disseminate, and advocate—to the profession, the building industry, the academy, and the public—design practices that integrate built and natural systems and enhance both the design quality and environmental performance of the built environment. COTE serves as the community and voice on behalf of AIA architects regarding sustainable design and building science and performance.

Bamboo

Renewable Resources

In green construction processes, there is an emphasis on the use of renewable resources. In many cases, this natural source becomes depleted much faster than it is able to replenish itself, therefore, it has become important that buildings make use of alternative water sources for heating, hot water and sewerage disposal throughout their life cycles, to reduce use and conserve water supplies.

Architects and designers specify rapidly renewable materials are those that regenerate more quickly than their level of demand. Our goal is to reduce the use and depletion of finite raw materials and long-cycle renewable materials by replacing them with rapidly renewable ones.  Some commonly specified rapidly renewable materials include cork, bamboo, cotton batt insulation, linoleum flooring, sunflower seed board panels, wheat-board cabinetry, wool carpeting, cork flooring, bio-based paints, geotextile fabrics such as coir and jute, soy-based insulation and form-release agent and straw bales. Some green building materials products are made of a merger of rapidly renewable materials and recycled content such as newsprint, cotton, soy-based materials, seed husks, etc.

Check out this ILMA article about “Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design” for more information on this topic.

Responsibility of Architects

Architects and designers who align with AIA’s COTE objectives, (1) recognize the value of their role in environmental leadership to advance the importance of sustainable design to the general public while incorporating sustainable design into their daily practice, (2) influence the direction of architectural education to place more emphasis on ecological literacy, sustainable design and building science, (3) communicate the AIA’s environmental and energy-related concerns to the public and private sectors and influence the decisions of the public, professionals, clients, and public officials on the impact of their environmental and energy-related decisions, (4) educate other architects on regulatory, performance, technical and building science issues and how those issues influence architecture, (5) educate the architectural profession on programming, designing, and managing building performance, (6) investigate and disseminate information regarding building performance best practices, criteria, measurement methods, planning tools, occupant-comfort, heat/air/moisture interfaces between the interior and exterior of buildings, (7) promote a more integrated practice in order to achieve environmentally and economically efficient buildings. One of the tools we will plan to promote to achieve this integration is Building Information Technology (BIM).

Smart-Building

The Role of Technology & Innovation – A Case Study (“The Edge”)

PLP Architecture and the Developer OVG Real Estate, built “The Edge” is a 430,556 SF (40,000m²) office building in the Zuidas business district in Amsterdam. It was designed for the global financial firm and main tenant, Deloitte. The project aimed to consolidate Deloitte’s employees from multiple buildings throughout the city into a single environment, and to create a ‘smart building’ to act as a catalyst for Deloitte’s transition into the digital age.

They key features of this building include the following innovations which address the environmental impact of building such a large edifice:

  • Each facade is uniquely detailed according to its orientation and purpose.
    • Load bearing walls to the south, east and west have smaller openings to provide thermal mass and shading, and solid openable panels for ventilation.
    • Louvers on the south facades are designed according to sun angles and provide additional shading for the office spaces, reducing solar heat gain.
    • Solar panels on the south facade provide enough sustainable electricity to power all smartphones, laptops and electric cars.
    • The North facades are highly transparent and use thicker glass to dampen noise from the motorway.
    • The Atrium façade is totally transparent, allowing views out over the dyke, and steady north light in.
  • The building’s Ethernet-powered LED lighting system is integrated with 30,000 sensors to continuously measure occupancy, movement, lighting levels, humidity and temperature, allowing it to automatically adjust energy use.
  • 65,000 SF of solar panels are located on the facades and roof, and remotely on the roofs of buildings of the University of Amsterdam – thereby making use of neighborhood level energy sourcing.
  • The atrium acts as a buffer between the workspace and the external environment. Excess ventilation air from the offices is used again to air condition the atrium space. The air is then ventilated back out through the top of the atrium where it passes through a heat exchanger to make use of any warmth.
  • Rain water is collected on the roof and used to flush toilets and irrigate the green terraces in the atrium and other garden areas surrounding the building.
  • Two thermal energy wells reach down to an aquifer, allowing thermal energy differentials to be stored deep underground.
  • In The Edge a new LED-lighting system has been co-developed with Philips. The Light over Ethernet (LoE) LED system is powered by Ethernet and 100% IP based. This makes the system (i.e. each luminaire individually) computer controllable, so that changes can be implemented quickly and easily without opening suspended ceilings. The luminaires are furthermore equipped with Philips’ ‘coded-light’ system allowing for a highly precise localization via smartphone down to 8 inches (20 cm) accuracy, much more precise than known WiFi or beacon systems.
  • Around 6,000 of these luminaires were placed in The Edge with every second luminaire being equipped with an additional multi-sensor to detect movement, light, infrared and temperature.
  • The Philips LoE LED system was used in all office spaces to reduce the energy requirement by around 50% compared to conventional TL-5 Lighting. Via the LoE system daily building use can be monitored. This data is fed to facility managers via the BMS allowing:
    • Remote insight into the presence of people in the building (anonymous). Heating, cooling, fresh air and lighting are fully IoT (Internet of Things) integrated and BMS controlled per 200 sqft based on occupancy – with zero occupancy there is next-to-zero energy use.
    • Predictions of occupancy at lunchtime based on real time historical data and traffic and weather information to avoid food-waste.
    • Unused rooms to be skipped for cleaning.
    • Managers to be alerted to lights that need replacing.
    • Notification of printers needing paper.
  • Every employee is connected to the building via an app on their smartphone. Using the app they can find parking spaces, free desks or other colleagues, report issues to the facilities team, or even navigate within the building.
  • Employees can customize the temperature and light levels anywhere they choose to work in the building via the mobile app. The app remembers how they like their coffee, and tracks their energy use so they’re aware of it.
  • The vast amount of data generated by the building’s digital systems and the mobile app on everything from energy use to working patterns, has huge potential for informing not only Deloitte’s own operations, but also our understanding of working environments as a whole. Discussions are currently ongoing regarding the future of this data and its use for research and knowledge transfer.
  • The green space that separates the building from the nearby motorway acts as an ecological corridor, allowing animals and insects cross the site safely.

Conclusion

Because buildings account for nearly 40 percent of global energy consumption, architects and designers have been working to impact the built environment in a positive way.  Although not every project can be as green as The Edge, by selecting materials that are renewable while reducing energy are two big contributions we can make to help ease the increasing demand for construction.

Technology can play a big part in our role to design more sustainable buildings through the use of building information modeling, energy management software, building management software, online sustainability calculators, energy modeling software, new lighting innovations, new techniques to capture and deliver energy and clean water while reducing waste, and mobile applications utilizing IoT.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


High Performance Building Design

Green-Building

970 Denny, a residential high-rise under construction in South Lake Union, used early energy modeling to demonstrate that efficiency from the water source heat pump system would offset increased thermal loss from expansive glazing.

The Federal EPA has implemented several strategies to enhance sustainability, including:

  • Conducting retro-commissioning and re-commissioning to improve energy performance
  • Using the most efficient heating, ventilation and air conditioning equipment and lighting
  • Assessing for compliance with ventilation and thermal comfort standards
  • Installing renewable energy systems
  • Replacing plumbing fixtures with higher efficiency models
  • Installing advanced energy and water meters
  • Reducing irrigated landscape areas
  • Retrofitting buildings and landscapes with low impact development features
  • Using integrated pest management techniques
  • Contracting green cleaning services
  • Purchasing environmentally preferable materials
  • Implementing materials reduction, reuse, recycling and composting programs

Airtight construction controls the transfer of heat and moisture into and through the building envelope. Thermal bridge-free assemblies avoid the envelope penetrations that sap buildings of energy, comfort, and durability. Continuous insulation keeps heat where it’s wanted. Excellent windows and doors limit heat loss while capturing daylight and passive solar energy. Shading elements shield the building from passive solar gains when unwanted. And a constant supply of filtered fresh air comes in through a balanced heat recovery (or energy recovery) ventilation system that recaptures the thermal energy of exhaust air and keeps it inside the building. “Envelope-first” focus design consideration dramatically reduces the energy demand to heat and cool high-performance building. In fact, Passive House buildings routinely reduce heating and cooling energy by up to 90%.

(Source: https://hammerandhand.com/field-notes/what-is-high-performance-building)

Green-Building-WorldThe research will further build on the results of the Well Living Lab’s latest study findings, published in Building and Environment. The study found that temperature, noise, and lighting in open office environments affect employees’ ability to get work done. This was a proof-of concept study that demonstrated the strength of living lab methodology in measuring realistic occupant responses to select environmental changes in an open office. Specifically, it indicated that employees are most sensitive to thermal conditions, followed by work-related noise such as conversations and lack of natural light from windows when working in open office environments. These factors affected work environment satisfaction, productivity, and even carried over into the mood of employees and their sleep.

(Source: https://facilityexecutive.com/2018/03/indoor-environments-impact-on-wellness-to-be-studied)

Further Reading:

Goining-Green-QuestionWe would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


The 7 Dimensions of Building Information Modeling

It has increasingly become crystal clear that BIM represents the opening of the architectural design community and construction industry to interoperability. There is no doubt that it’s a long and tedious way to being fully developed, however, important steps have been made during the last decades and the future of construction looks brighter day by day.

What is BIM?
3D-House

Building Information Modeling (BIM) is the process of creating information models containing both graphical and non-graphical information in a Common Data Environment (CDE) (a shared repository for digital project information). The information that is created becomes ever more detailed as a project progresses with the complete dataset then handed to a client at completion to use in the building’s In Use phase and potentially on into a decommissioning phase.

When we talk about BIM maturity we are essentially talking about the supply chain’s ability to exchange information digitally. The maturity levels from Level 0, through Levels 1, 2, 3 and beyond are often visualized via the maturity ‘wedge’ diagram conceived by Mark Bew and Mervyn Richards. Our article on BIM Levels Explained is a good place to start if you’re looking for more information.

BIM dimensions are different to BIM maturity levels. They refer to the particular way in which particular kinds of data are linked to an information model. By adding additional dimensions of data you can start to get a fuller understanding of your construction project – how it will be delivered, what it will cost and how it should be maintained etc. These dimensions – 4D, 5D and 6D BIM – can all feasibly (but not necessarily) occur within a BIM Level 2 workflow.

In this blog post we explore what it means to add different dimensions of information to a BIM process and explore what this looks like in practice and what benefits might be expected.

7D BIM

3D (The Shared Information Model)

3D BIM is perhaps the BIM we are most familiar with – the process of creating graphical and non-graphical information and sharing this information in a Common Data Environment (CDE).

As the project lifecycle progresses this information becomes ever more rich in detail until the point at which the project data is handed over to a client at completion.
4D (Construction sequencing)

4D BIM adds an extra dimension of information to a project information model in the form of scheduling data. This data is added to components which will build in detail as the project progresses. This information can be used to obtain accurate programme information and visualisations showing how your project will develop sequentially.

Time-related information for a particular element might include information on lead time, how long it takes to install/construct, the time needed to become operational/harden/cure, the sequence in which components should be installed, and dependencies on other areas of the project.

With time information federated in the shared information model planners should be able to develop an accurate project programme. With the data linked to the graphical representation of components/systems it becomes easy to understand and query project information and it is also possible to show how construction will develop, sequentially, over time showing how a structure will visually appear at each stage.

Working in this way is enormously helpful when it comes to planning work to ensure it is safely, logically and efficiently sequenced. Being able to prototype how assets come together before ground is broken on site allows for feedback at an early stage and avoids wasteful and costly on-site design co-ordination and rework. Showing how projects will be constructed visually is also handy when engaging with stakeholders, giving everyone a clear visual understanding of planned works and what the finished construction will look like with no surprises.

Adding sequencing information can be extremely useful, not just in the design phase, but earlier too, allowing for the feasibility of schemes to be assessed from the off. At tender stage this kind of information can allow initial concepts to be explored and communicated to inspire confidence in the team’s ability to meet the brief.

It’s important to note that working with 4D information doesn’t negate the need for planners who remain an integral part of the project team. Rather than creating programs as proposals develop, as is the case in traditional workflows, in a digital workflow planners can now influence and shape proposals from a much earlier stage in a project. Indeed, by being closer to the wider project team and providing feedback earlier in the process, there is the potential for planners to add significantly more value to a construction project.

3D-Guggenheim-Model5D (Cost)

Drawing on the components of the information model being able to extract accurate cost information is what’s at the heart of 5D BIM.

Considerations might include capital costs (the costs of purchasing and installing a component), its associated running costs and the cost of renewal/replacement down the line. These calculations can be made on the basis of the data and associated information linked to particular components within the graphical model. This information allows cost managers to easily extrapolate the quantities of a given component on a project, applying rates to those quantities, thereby reaching an overall cost for the development.

The benefits of a costing approach linked to a model include the ability to easily see costs in 3D form, get notifications when changes are made, and the automatic counting of components/systems attached to a project. However, it’s not just cost managers who stand to benefit from considering cost as part of your BIM process. Assuming the presence of 4D program data and a clear understanding of the value of a contract, you can easily track predicted and actual spend over the course of a project. This allows for regular cost reporting and budgeting to ensure efficiencies are realized and the project itself stays within budget tolerances.

The accuracy of any cost calculations is, of course, reliant on the data produced by multiple teams and shared within the Common Data Environment. If that information is inaccurate, so too will be any calculations that rely upon it. In this respect using BIM to consider cost is no different to more traditional ways of working. It is for this reason that quantity surveyors and estimators still have an important role to play, not only in checking the accuracy of information but also in helping to interpret and fill information ‘gaps’. Many elements of a project will still be modelled in 2D or not at all. There’s also likely to be differences between models in how things are classified and the cost manager will need to clarify and understand the commonality between what at first feel like disparate things.

An information model is likely to contain three types of quantity. Quantities based on actual model components (with visible details) which you can explore through the model are the most obvious. Quantities may also be derived from model components (such as moldings around windows) that aren’t always visible. The third kind of quantity is non-modeled quantities (these include temporary works, construction joints etc.). Unless the construction phase is modeled then the design model will show, graphically, design quantities but not the construction quantities. A cost manager is likely to be skilled in picking up the quantities that aren’t solely based on model components.

One of the advantages of extrapolating cost from the information model is the fact that the data can be queried at any time during a project and the information that feeds cost reports is regularly updated. This ‘living’ cost plan helps teams design to budget and because cost managers are engaged from the start of a project this allows for faster, more accurate reporting of costs at the early stages of a project. Compare this to a traditional approach where a cost manager’s report may be updated a few times during the early stages of a project with completed designs only fully costed at the end of the project team’s design process.

The cost manager may have to get used to working earlier and more iteratively than in a traditional process but has just as important a role to play in overall project delivery.

3d-perspective-section-cardigan-street6D BIM (Project Lifecycle Information; Sustainability)

The construction industry has traditionally been focussed on the upfront capital costs of construction. Shifting this focus to better understand the whole-life cost of assets, where most money is proportionately spent, should make for better decisions upfront in terms of both cost and sustainability. This is where 6D BIM comes in.

Sometimes referred to as integrated BIM or iBIM, 6D BIM involves the inclusion of information to support facilities management and operation to drive better business outcomes. This data might include information on the manufacturer of a component, its installation date, required maintenance and details of how the item should be configured and operated for optimal performance, energy performance, along with lifespan and decommissioning data.

Adding this kind of detail to your information model allows decisions to be made during the design process – a boiler with a lifespan of 5 years could be substituted with one expected to last 10, for example, if it makes economic or operational sense to do so. In effect, designers can explore a whole range of permutations across the lifecycle of a built assets and quickly get an understanding of impacts including costs. However, it is at handover, that this kind of information really adds value as it is passed on to the end-user.

A model offers an easily-accessible and understood way of extrapolating information. Details that would have been hidden in paper files are now easily interrogated graphically. Where this approach really comes into its own is in allowing facilities managers to pre-plan maintenance activities potentially years in advance and develop spending profiles over the lifetime of a built asset, working out when repairs become uneconomical or existing systems inefficient. This planned and pro-active approach offers significant benefits over a more reactive one – not least in terms of costs.

Ideally the information model should continue to develop during the In Use phase with updates on repairs and replacements added in. Better yet, a myriad of operational data and diagnostics can also be fed in to inform decision making still further.

3D-Sydney-Opera-House7D (Operations and Facilities Management)

Studies indicate that over 90% of total building lifecycle costs are related to facility maintenance and operations. Real estate and facility managers are increasingly showing interest in using BIM in facility management.

Some of the highlights of effectiveness of utilizing BIM 7D include:

  • Preventative Maintenance Scheduling: BIM can be used to plan and track maintenance activities proactively and appropriately by using the information about the building structure and equipment used in the facility. This type of preventative maintenance activities will help improve building performance, reduce corrective maintenance and emergency maintenance repairs and increase productivity of maintenance staff.
  • Sustainability Analysis: BIM integrated with other analysis & evaluation tools are used to track building performance data, which can be compared with specified sustainable standards to identify the flaws in the building systems. Facility’s sustainability program can be improved to better match the sustainability goals.
  • Asset Management: Assets of a building consist of the physical building, its systems, equipment and surrounding environment. Asset management is essential in short-term and long-term planning for proper upkeep of building assets. The bi-directional Building Information Modeling (BIM) integration into asset management software can help in better visualization of assets and aid in the maintenance and operation of a facility.
  • Space Utilization Management: Facility professionals and department liaisons can utilize BIM to effectively manage, track and distribute appropriate spaces and related resources within a facility. BIM space management application turns out to be beneficial in planning renovation projects and future needs, allocating space for proper usage of each corner of the building and tracking the impact of proposed changes.
  • Disaster & Emergency Planning: BIM can provide critical building information to improve the efficiency of disaster response plans and minimize any risk. BIM can be integrated with building automation system (BAS) to display where the emergency is located within a building, to find possible routes to the affected area and to locate other dangerous areas within the building during such emergencies.

Sources & References:
https://www.autodesk.com/solutions/bim
https://geniebelt.com/blog/bim-maturity-levels

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


Creating High Performance Buildings through Integrative Design Process

The “High Performance by Integrative Design” film by RMI includes examples of how design teams collaborate in new ways to integrate high-performance design elements, such as daylighting, energy efficiency and renewable energy, for optimal performance. Viewers experience charrette discussions and see the design process unfold on projects such as the Empire State Building retrofit, Missouri Department of Natural Resources, Phipps Conservancy in Pittsburgh, the Desert Living Center in Las Vegas, Willow School in New Jersey and Chicago Botanic Gardens.

Typical Design & Construction Process

Conventional planning, design, building, and operations processes often fail to recognize that buildings are part of larger, complex systems. As a result, solving for one problem may create other problems elsewhere in the system.1

Integrative Design & Construction Process

Collaboration leads to innovation

An integrated design process (IDP) involves a holistic approach to high performance building design and construction. It relies upon every member of the project team sharing a vision of sustainability, and working collaboratively to implement sustainability goals. This process enables the team to optimize systems, reduce operating and maintenance costs and minimize the need for incremental capital. IDP has been shown to produce more significant results than investing in capital equipment upgrades at later stages.2


As discussed in a previous post, the integrated process requires more time and collaboration during the early conceptual and design phases than conventional practices. Time must be spent building the team, setting goals, and doing analysis before any decisions are made or implemented. This upfront investment of time, however, reduces the time it takes to produce construction documents. Because the goals have been thoroughly explored and woven throughout the process, projects can be executed more thoughtfully, take advantage of building system synergies, and better meet the needs of their occupants or communities, and ultimately save money, too.3


Considerations and Advantages of an Integrative Design Process:

  • ID&CP processes and strategies can be implemented to varying degrees depending upon the complexity of a project and an owner’s project goals.
  • A project team must be carefully assembled very early on in the process to ensure success.
  • All key participants must subscribe to the collaborative effort of establishment clear goals.
  • All project stakeholders must be involved and remain involved in the project, and must communicate openly and frequently.
  • Key participants must employ appropriate technology to foster collaborative design and construction.

Similar to the Construction Management at Risk approach to project delivery, the owner can benefit from the following IPD advantages:

  • Owner receives early cost estimating input, sometimes as early as conceptual design.
  • The owner can take advantage of special services such as:
    • Feasibility studies
    • Value engineering
    • Life cycle costs
    • Identification of long-lead items and their pre-purchase
  • Significant time can be saved because the design effort is emphasized and completed earlier in the process, and because construction can begin before the design is fully complete.
  • Architectural and engineering fees can be reduced by the early involvement of the specialty contractors.
  • Construction costs are minimized by incorporating constructability reviews into the process, and by the designers incorporating materials, methods, and systems that the team knows are more cost effective.
  • Operating costs can be reduced by providing opportunities to greatly affect long-term energy and resource use through design.
  • Capital costs can be reduced, thanks to clearer and better coordinated construction documents, which should minimize the incidence of change orders that impact both cost and time.
  • Misunderstanding between the parties is minimized when the IPD Team works together during the planning stages of the project.
  • The owner’s risk is minimized as the IPD Team approach tends to focus on early identification of potential conflicts and issues through the utilization of modeling tools. This early identification results in timely problem solving and resolution of issues through the use of models, as opposed to problem solving in the field and constructed environments.


We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

Gift Ideas from ILMA


Before and After – 2 Dramatic Transformations Designed by @FC3ARCHITECT

Commercial Transformation

The client is looking for modest cost effective design solutions to enhance his storefront on a main street of an urban center.

Existing Photograph

Existing Photograph

Latest Rendering - March 10, 2013

Proposed Improvements

Residential Transformation

This home was impacted by Hurricane Sandy.  The repairs and alternations will include aesthetic enhancements and updates.

Linden - Ranch Transformation

EXISTING ELEVATIONS:

linden - existing

PROPOSED ELEVATIONS:

linden-proposed-01

linden-proposed-02

Also Check Out:

My Personal Architecture Portfolio

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


What is a High Performance School?

Ask the Architect


by Frank Cunha III

What is a High Performance School?

A “High Performance School” is a well-designed facility can enhance performance and make education more enjoyable and rewarding. A “High Performance School” is healthy and thermally, visually, and acoustically comfortable. It is also energy, material, and water efficient. A “High Performance School” must be safe and secure; easy to maintain and operate; commissioned; environmentally responsive site. Most of all a “High Performance School” is one that teaches and is a community resource. It should also be stimulating as well as adaptable to changing needs.

Improved Student Performance

Evidence is growing that high performance schools can provide learning environments that lead to improved student performance.  Recent studies show that effective daylighting has contributed to improved student test scores by 10-20%. Intuitively quieter, comfortable classrooms with good lighting and good air quality yield better students/teachers. Low- and no-emission building materials can reduce odors, sensory irritation, and toxicity hazards. Efficient windows also reduce outside noise distractions. Improved heating and cooling systems permit students to hear the teacher better and avoid room temperature swings. Adequate lighting improves students’ ability to read books and see the blackboard. Considerations for “High Performance Schools”include: siting; indoor environmental quality; energy; water; materials; community; faculty and student performance; commissioning; and facilities performance evaluation.

 Siting

Siting is critical for “High Performance Schools” with regards to the environment, energy consumption, and indoor environmental quality, transportation, greenfields, endangered species, wetlands concerns, existing pollution on the site, and stormwater management. A key factor in site design is orientation of the building, which can influence passive heating, natural ventilation, and daylighting. Optimal orientation can reduce year-round heating and cooling costs and optimizes natural lighting. If possible orient buildings so that the majority of windows face either north or south. Strategic placement of vegetation can be used when this orientation cannot be utilized.

Positive affects on the energy and environmental performance of a school include primary consideration for the environmentally sound school building. A school building should complement its environment. Working around existing vegetation to shade building and outside cooling equipment to reduce HVAC load help ensure good environmental performance of school by lowering energy bills and reducing local pollution. Locating a school near public transportation and within walking distance to a majority of students will further reduce energy use, while lowering local traffic and pollution.

Stormwater management is vital to safety and ecological health of a school’s site. Moving stormwater quickly to gutters, downspouts, catch basins, and pipes increases water quantity and velocity requiring large and expensive drainage infrastructure. Water should be captured in cisterns and ponds, or absorbed in groundwater aquifers and vegetated areas. Remaining water runoff should be slowed down and spread across roof and paved surfaces evenly before entering bioswales and creeks. Perforated drainpipe and filters, and “Green” roofs promote water absorption.

“High Performance Schools” promote student safety and security. Visibility of school entrances from main office and general accessibility of the school grounds can affect security. Lighting quality in halls and corridors is also critical.

Indoor environmental quality (IEQ)

“High Performance Schools “ optimize IEQ by considering it throughout the design and construction process. IEQ includes indoor air quality; acoustics; daylighting; lighting quality; and thermal comfort. Benefits include: reduction in student and teacher absences; increase student performance; reduction of illnesses related to indoor toxins; improved teacher retention rates; reduced distractions; improved comfort levels; and maintenance of healthy students, teachers and staff.

Proper siting contributes to positive daylighting potentials and acoustics. Building envelope design affects thermal comfort, daylighting, and indoor air quality. Material choices can also have a positive affect on IEQ. Construction process and the operations and maintenance affect Indoor Air Quality. Key elements of building’s indoor environment affecting occupant comfort and health include: Thermal comfort – temperature, radiant heat, relative humidity, draftiness; light – amount and quality, lack of glare, direct sunlight; noise – levels and kinds, classroom acoustics, inside and outside sources; ventilation, heating & cooling – fresh air intake, re-circulation, exhaust; microbiologic agents – infectious disease, mold, bacteria, allergens; and chemical agents in air or surface dust –volatile organics (formaldehyde), pesticides, lead, asbestos, radon;

Ill health effects associated with poor IEQ can cause students, teachers, and administrative staff to experience a range of acute or chronic symptoms and illnesses including: headaches and fatigue (from VOCs and glare); irritation of eyes, nose, and throat (from VOCs, particles, low relative humidity); respiratory symptoms – allergic reactions (from mold, animal allergens, dust mites); breathing difficulties – increase in asthma symptoms (from allergens, particles, cold); increased transmission rates of colds and flu’s (due to poor ventilation); and poor IEQ can also lead to excessive exposure of classroom occupants to some carcinogens.

Important decisions school designers should pay particular attention to key buildings elements: building materials and surfaces (low-emitting for chemicals); ventilation systems (quiet, efficient filters, adequate fresh air); fenestration (adequate and operable windows); site drainage; envelope flashing and caulking; ande ase of maintenance for building components (e.g., floor cleaning, filter changing).

Common IEQ problems in classrooms include: excessive levels of volatile organic compounds, like formaldehyde, which can cause eye, nose, and throat irritation and pose cancer risks (these compounds are emitted from new pressed wood materials, and in some other building materials and furnishings, especially in new or remodeled classrooms); although classrooms have individual control of HVAC systems, these systems are often noisy and are not continuously operated (causing large swings in both temperature and humidity levels, and allowing indoor air pollutant levels to build up); moisture problems are sometimes present in roofing, floors, walls, and exterior doors; operable windows are often small or absent; siting can be problematic relative to pollutant and noise sources, poor site drainage, and shading.

Energy

It is critical to manage and conserve natural resources in “High Performance Schools.” This can be done by reducing carbon dioxide emissions by using renewable energy resources; integration of concerns with design process; building siting and orientation; buildings shape; and landscaping; lighting, heating, cooling and ventilation sources. Integrated design can yield long and short-term savings. Reduced heat from an energy efficient lighting system and good natural ventilation designs can reduce the cooling demand, and thus the size and cost of the air conditioning units. All members of the design team should meet early on in the planning process and continue to coordinate integrated design concepts throughout the project in order to reduce energy costs.

The end result of integrated design is reduced overall energy consumption, thus saving construction costs through the downsizing of the systems and on-going costs of operation through reduced utility bills.
Many programs are available to help schools build energy-efficient facilities. Educate students about energy issues and to install renewable energy systems in schools. By taking advantage of these programs, schools can realize cost savings, better educate their students and help to ensure a cleaner, more stable environment for the future.

During the rush to construct new school buildings, districts often focus on short-term construction costs instead of long-term, life-cycle savings. The key to getting a high-performance school is to ask for an energy-efficient design in your request for proposals (RFP) and to select architects who are experienced in making sure that energy considerations are fully addressed in design and construction. Unless a school district directs its architect to design energy-efficient buildings, new schools may be as inefficient as old ones, or they may incorporate only modest energy efficiency measures.

Total construction costs for energy-efficient schools are often the same as costs for traditional schools, but most architects acknowledge a slight increase in the capital costs maybe necessary (as some energy efficient building features may cost more.) Efficient buildings have reduced building energy loads and take better advantage of local climate. A properly day lit school, for example, with reduced electrical lighting usage and energy efficient windows can permit downsized cooling equipment. Savings from this equipment helps defer costs of daylighting features. Even when construction costs are higher, resulting annual energy cost savings can pay for additional upfront capital costs quickly.

Older “cool” fluorescents had low quality of light that gives human skin a sickly bluish color. Newer fluorescent lights are both higher light quality and higher efficacy. Daylight, the highest quality of light, can help reduce energy use if the lighting system is properly integrated, with ambient light sensors and dimming mechanisms.

Daylighting

The design and construction of a school’s daylighting systems can cost more money. Properly day lit school (with associated reduced electrical lighting usage) can lead to downsized cooling equipment. The savings from this smaller equipment helps defer the costs of the daylighting features. Hiring an architect or engineering firm that is experienced in good daylighting design, especially in schools, will minimize any additional costs from the design end of a project. As with any building feature, effective daylighting requires good design.

Today’s window technology and proven design practices can ensure that daylighting does not cause distributive glare or temperature swings. Exterior overhangs and interior cloth baffles (hung in skylight wells) eliminate direct sunlight, while letting evenly distributed daylight into rooms. “Daylight” is in effect controlled “sunlight” manipulated to provide useful natural light to classroom activities. Moreover, daylight by nature produces less heat than that given off by artificial lighting.

The application of daylighting without control of sun penetration and/or without photo controls for electric lights can actually increase energy use. Design for daylighting utilizes many techniques to increase light gain while minimizing the heat gain, making it different from passive solar in a number of ways. First of all, the fenestration (or glazing) of the windows is different.  In a day lit building, the glazing is designed to let in the full spectrum of visible light, but block out both ultra violet and infrared light. Whereas, in a passive solar building, the fenestration allows for the full spectrum of light to enter the building (including UV and Infra red), but the windows are designed to trap the heat inside the building. In addition, in day lit rooms, it is undesirable to allow sunlight in through the window. Instead, it is important to capture ambient daylight, which is much more diffusing than sunlight, this is often achieved by blocking direct southern exposure, and optimizing shaded light and northern exposure. Passive solar maximizes south facing windows, and minimizes north-facing windows, thus increasing heat gain, and minimizing heat loss.

Water

As population growth increases demand for water increases. A “High Performance School” must reduce water consumption and use limited water resources wisely. This can be achieved by utilizing: water-efficient landscape techniques; water-efficient fixtures and controls in indoor and outdoor plumbing systems. The largest use of water in schools is in cooling and heating systems (evaporative cooling systems, single-pass cooling systems, etc.), kitchens, maintenance operations, landscaping irrigation, locker rooms, and restrooms. Good landscaping design including specifying native plants, proper spacing, and low-flow irrigation (that runs at night) will reduce a school’s water demand and expenditures.

High-efficiency irrigation technologies such as micro-irrigation, moisture sensors, or weather data-based controllers save water by reducing evaporation and operating only when needed. In urban areas, municipally supplied, reclaimed water is an available, less-expensive, and equally effective source for irrigation. The siting of a school and the shape of the land upon which is resides have tremendous impact on water resources. Selecting drought-tolerant plants will naturally lessen the requirement for water. In addition, using mulch around plants will help reduce evaporation, resulting in decreased need for watering plants or trees.

Drip irrigation systems with efficiencies of up to 95% rather conventional spray systems with efficiencies of only 50 to 60%.

The treatment of sewage is a costly process taken on by the local utility at the customer’s expense. The wastewater is typically treated and released back to the environment. Waste materials extracted from the wastewater must be further disposed of according to local codes. Considering on site water treatment will reduce the load on the local utility, offer an opportunity for students to learn about the biological and chemical processes involved in water treatment, and reduce operational expenses by avoiding a utility bill.

Greywater is water that has been used in sinks, drinking fountains, and showers. Black water is water that has been used in toilets. Greywater is fairly simple and safe to clean and reuse, whereas there are more health risks associated with black water.

Materials

“High Performance Schools” utilize material efficiency, which includes durable, reused, salvaged, and refurbished or recycled content. Recyclable materials manufactured using environmentally friendly practices.

Material efficiency can often save schools money by reducing the need to buy new materials and by reducing the amount of waste taken to the landfill. “high Performance Schools can reduce the amount of materials needed by: reusing onsite materials; eliminating waste created in the construction and demolition process; choosing materials that are safe, healthy, aesthetically pleasing, environmentally preferable, and contain low embodied energy.

Waste reduction planning is essential for school districts. These wastes represent a significant loss of natural resources and school district funds as well as a potential threat to student/staff health and the environment. To be responsible stewards of environmental quality, school districts should review new school construction, processes and operations, and even curriculum choices and evaluate the economic, educational, and environmental benefits of implementing effective waste reduction measures. Incorporating waste reduction as part of the school district’s overall way of doing business can provide a number of important benefits: reduced disposal costs; improved worker safety; reduced long-term liability; increased efficiency of school operations; and decreased associated purchasing costs.

Building materials may have a number of associated operating costs beyond the straightforward, initial capital costs. Proper selection is essential to minimize these secondary costs. Building materials may pose future health hazards, costing schools absentee time and lost student and faculty productivity. Consider the dangers of volatile organic compounds, dust, and moisture when selecting materials. Keeping these indoor pollutants at a minimum will ensure a healthy indoor environment and improve the learning environment.

Consider also the composition of the materials and how recyclable, durable, and refinishable they are. Keeping each of these characteristics in mind when selecting materials, the building will provide better service and reduce maintenance and operating costs. Source building materials from local distributors and save transportation energy costs if possible.

Transportation costs are sometimes referred to as part of a material’s embodied cost (and energy). Purchase building materials with low embodied costs such as local regional certified wood harvested from sustainable and well-managed forests. Onsite waste reduction and reuse during demolition and construction can save money by reducing amount of money spent at landfill, and by reducing initial amount of money spent on new materials.  Save on labor costs by providing a Construction and Demolition waste plans before starting operations and identifying where to recycle materials and what materials to salvage.

Community

The location where a “High Performance School” is constructed impacts the surrounding community. It can affect pedestrian and automobile traffic; quantity and quality of open space in the neighborhood; location within the community; and may be used as a tool to revitalize a community.

Once the school site is determined, the school’s design, construction, and use should be considered. Aspects such as the exterior design, amenities that it may provide and environmental design features can be a source of pride to the community. Schools can be a center for teaching and learning, and also add functional value within the community by providing access to facilities and play fields, and services such as after-school daycare and extended education.

High performance design for schools can be a selling point in bond elections because energy, indoor air quality, and other improvements translate to more comfortable classrooms for students, reduced energy bills, and lower operating and maintenance costs. Schools become healthier learning environments, reduce waste, and have less impact on the environment. Good indoor environmental quality has been proven to increase average daily attendance of students.

Faculty & Student Performance in High Performance Schools

Challenges include: tight budgets; an ever-increasing student enrollment; growing need for the renovation and building of many schools; higher expectation of faculty and student performance among these compelling circumstances. Sustainable schools can have a favorable impact on the school’s budget; help protect our environment; and encourage better performance of faculty and students as a result of a better learning environment.

“High Performance Schools” integrate today’s best technologies with architectural design strategies to achieve a better learning environment. These include: lighting – integration of daylighting and electrical lighting technologies; reduced noise levels by using acoustic materials and low-noise mechanical systems; healthy air quality, temperature, humidity levels – indoor air quality; thermal comfort; HVAC systems; low-emission materials; and reduce distractions and create environments where students and teachers can see and communicate with one another clearly and comfortably.

Commissioning

Without properly commissioning a school, many sustainable design elements can be compromised. In the American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline, The Commissioning Process is defined as follows: “The Commissioning Process is a quality-oriented process for achieving, verifying, and documenting that the performance of facilities, systems, and assemblies meet defined objectives and criteria. The Commissioning Process begins at project inception (during the pre-design phase) and continues for the life of the facility through the occupancy and operation phase. The commissioning process includes specific tasks to be conducted during each phase in order to verify that design, construction, and training meets the Owner’s Project Requirements.” By implementing a commissioning plan, a school can be sure that all of the systems function at optimum levels.

Facilities Performance Evaluation

Building and its systems are tested one year after completion and occupancy. Surveys are conducted to evaluate the satisfaction of occupants and maintenance and operations personnel. Alert school to system operational performance errors and potential hazards created by poorly operating systems. These problems can be corrected.

Data can be provided to school districts on what building attributes do and don’t work for their schools. Schools can develop guidelines and protocols that can help create better schools in the future.

Key Benefits of a High Performance School

Benefits include higher test scores, increased average daily attendance, increased teacher satisfaction and retention, reduced liability exposure, and sustainable school design.

Financing and incentives

Total construction costs for high performance schools are often the same as costs for conventional schools. Design costs may be slighting higher, but resulting capital and long-term operation costs can be lower. Properly designed day lit school with reduced electrical lighting usage can permit downsized cooling equipment. Even when construction costs are higher, resulting annual operational cost savings can pay for the additional upfront in a short period of time. High performance schools are falsely understood to be high-budget construction projects. Schools can find ways to finance a school beyond the State Allocation Board process. A collection of financial incentives in relation to energy, water, materials, siting, green building, landscaping and transportation from the Federal, State, Local, and Utility sectors may be available.

We would love to hear from you on what you think about this post.  We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.

 


Not ready to start using Building Information Modeling? Try AutoCAD 2013 Free Trial

Not ready to start using Building Information Modeling?

Autodesk provides several native Mac products for 3D modeling, rendering, and animation, visual effects, and digital imagery.

AutoCAD for Mac AutoCAD for Mac
Design and shape the world around you with AutoCAD® for Mac® software. Explore your ideas and share data seamlessly while working in a native Mac environment.
Free Trial | How to Buy
Download AutoCAD Trial of design and documentation software for 2D and 3D CAD
Download a 30-day trial of AutoCAD® design and documentation software for 2D and 3D CAD

  • Document— Speed projects from concept to completion with documentation capabilities that create your designs faster than ever before
  • Connect—Import and aggregate models from a variety of applications, and access your designs from almost anywhere with Autodesk 360 cloud computing platform
  • Customize—Customize your AutoCAD experience with a programming interface and Autodesk Exchange Apps
  • Unlock the power of AutoCAD when used as a part of AutoCAD Design Suite, the optimal solution to create and showcase your designs

Free Trial Details

Free 30-Day Trial

First Name:
Last Name:
Email:

FAQs

What are some of the new features of AutoCAD 2013?
The latest AutoCAD version offers new tools for design aggregation, connectivity with Autodesk 360 cloud computing platform, and access to hundreds of apps.
 AutoCAD 2013 Product Brochure

What are the key capabilities of AutoCAD Design Suite?
AutoCAD Design Suite enables you to do more with AutoCAD software with tools to capture scanned documents, sketch design concepts, and showcase designs with amazing 3D renderings.
 AutoCAD Design Suite Brochure

How do I know which AutoCAD Design Suite is for me?
AutoCAD Design Suite is available in three editions—standard, premium, and ultimate—to fit your workflow. Compare the functionality of each edition.

We would love to hear from you on what you think about this post.  We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


Tips for Improving Revit Performance Utilizing Parallels on a Mac

Are you running Revit using virtualization on a Mac?I use Revit every day on a MacBook Air using Parallels Desktop for Mac and Windows 7, and the performance is not an issue.

Check out these tips to improve the performance on your computer…

Many users marvel when I do Revit demonstrations using Windows 7 running on Parallels Desktop for the Mac.

My experience with virtualization solutions has been varied – ranging from painfully slow to near Windows-native performance. Here are some tips for running Revit software on a Mac based on my testing

Click here to read the rest of the story

We would love to hear from you on what you think about this post.  We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


Album Format Not Dead (Adele #1 Digital Album)

The following news story shows that people will still download full albums if it is filled with great songs.

Just one week after Eminem’s Recovery became the first album to sell 1 million digital copies, Adele’s 21 has surpassed the milestone and is now the biggest-selling digital album in history. Digital sales of 21 exceed 1.017 million (out of 2.6 million total), compared with Recovery‘s 1.005 million (out of 3.9 million). Overall, almost a third (32%) of the 155.5 million albums sold in the first half of 2011 were digital, according to a midyear report released last week by Nielsen SoundScan. That’s up 19% from the same period in 2010, when 27% of 153.9 million album sales were digital.

Click here to read the rest of the story


Order, Formulas, and Rules

by Frank Cunha III

It seems like when you finally get it right in Architecture, Art, Music, Fashion, etc, you become a “sellout.”  So what is Right? How can we get it right? Will anyone know the difference?  In the music industry, record companies spend millions studying what kind of music we enjoy.  Recently I heard that they have developed a formula for what makes great music whether we consciously agree or not (they call it “musically satisfying”).  Is it any wonder we get those cheesy songs stuck in our head?  This comes as no surprise in a technologically advanced and transformative world.  Could the same be true for Architecture (Architecturally satisfying)?

Like many other Architects, I subscribe to hard copies and digital copies of various Art & Architecture magazines.  It’s fun to see all the new and exciting international projects that have been commissioned.  It’s also frustrating to see that many of the projects follow some sort of formula – It is easy/difficult to put a finger on it but given an opportunity – Budget, Client, Program, couldn’t we too fudge, I mean design something similar?  I remember an old college professor telling us how in his day he had to study / copy the Masters of his day for Architecture School.

I am pretty sure I did not miss class the day they taught the secret formula to creating great Architecture – Which leads me to ask, What is great?  I mean, we all have our opinions on the Masters of our day – Good or Bad.  What I mean to ask is something that delves deeper.  Besides the ability to obtain intellectual clients with extremely high budgets looking for “meaningful” design, how do these high profile Architects / Architecture firms land these clients?  Once they figure out this formula is it a matter of fine-tuning it and repeating it?

Although Architecture is filled with Order & Rules (figuratively and literally) should there be a Formula to producing great works of Architecture?

I would think that a world without figurative Order & Rules of today’s contemporary Architecture (that results in the “Same” different Architecture, the same way someone dyes their hair pink or blue to be different, to be like their friends) would result in a more meaningful, natural world of Architecture filled with unique projects emulating real emotion and artfulness.  When Architecture (or Music for that matter) begins to repeat these figurative patterns it also eliminates the artfulness of the unknown. The mystery of Architecture is not in the mathematics or science of Architecture but in it’s naïve soulfulness.  That is where I believe the true spirit of Architecture resides.


Basilica of San Lorenzo By Filippo Brunelleschi #ilmaBlog #Architecture #History

The Basilica of San Lorenzo is considered a milestone in the development of Renaissance architecture. The basilca has a complicated building history. The project was begun around 1419, under direction of Filippo Brunelleschi, Lack of funding slowed the construction and forced changes to the original design. By the early 1440s, only the sacristy (now called the Old Sacristy) had been worked on as it was being paid for by the Medici.

In 1442, the Medici stepped in to take over financial responsibility of the church as well. Brunelleschi died in 1446, however, and the job was handed either to Antonio Manetti or to Michelozzo; scholars are not certain. Though the building was “completed” in 1459 in time for a visit to Florence by Pius II, the chapels along the right-hand aisles were still being built in the 1480s and 1490s.

By the time the building was done, aspects of its layout and detailing no longer corresponded to the original plan. The principal difference is that Brunelleschi had envisioned the chapels along the side aisles to be deeper, and to be much like the chapels in the transept, the only part of the building that is known to have been completed to Brunelleschi’s design.

The most celebrated and grandest part of San Lorenzo are the Cappelle Medicee (Medici Chapels) in the apse. The Medici were still paying for it when the last member of the family, Anna Maria Luisa de’ Medici, died in 1743. Almost fifty lesser members of the family are buried in the crypt. The final design (1603–1604) was by Bernardo Buontalenti, based on models of Alessandro Pieroni and Matteo Nigetti. Above is the Cappella dei Principi(Chapel of the Princes), a great but awkwardly domed octagonal hall where the grand dukes themselves are buried.

The style shows Mannerist eccentricities in its unusual shape, broken cornices, and asymmetrically sized windows. In the interior, the ambitious decoration with colored marbles overwhelms the attempts at novel design (Wittkower, R. p. 126). At its centre was supposed to be the Holy Sepulchre itself, although attempts to buy and then steal it from Jerusalem failed.

For more information on the work of Filippo Brunelleschi click here.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


The 10 Most Important Things I Learned from My Parents and Hope to Teach My Kids

(Original: September 24, 2011; Updated on April 20, 2020)

1. Health is the greatest wealth you will ever have.

In light of recent events this seems more profound than ever before. We take our health for granted but sooner or later when something goes wrong we seem to appreciate it as our number one gift.  Without a healthy body, mind and spirit we are faced to live a life of pain and suffering.  Living a life of health means a life of balancing.  It is fine to enjoy life but remember that we only have one body and one life.  I like to think that the body we are given on earth will be the body that we have in heaven and that makes me want to respect my body and treat it like a temple.  All the money in the world is not going to help save you if you do not have your health.

You can’t enjoy wealth if you’re not in good health.” “Happiness is the new rich. Inner peace is the new success. Health is a new wealth.

—Syed Balkhi

2. Education is the best gift we can give you; the rest is up to you.

The ability to acquire knowledge and use knowledge is a powerful weapon in today’s world filled with over-stimulation and contradictory information.  More than ever there is so much propaganda and false information that we need to really educate ourselves.  I like to learn about weird facts, history, art, science, architecture and inspirational/motivational topics.  Using formal education as a springboard life can be filled with wonder by thinking about different topics in new ways using creativity and imagination.  Now that many of us are in self isolation it is a great time to get reacquainted with an old book or some new ones.

“Our culture has become hooked on the quick-fix, the life hack, efficiency. Everyone is on the hunt for that simple action algorithm that nets maximum profit with the least amount of effort. There’s no denying this attitude may get you some of the trappings of success, if you’re lucky, but it will not lead to a calloused mind or self-mastery. If you want to master the mind and remove your governor, you’ll have to become addicted to hard work. Because passion and obsession, even talent, are only useful tools if you have the work ethic to back them up.” 

—David Goggins

Now that many of us are in self isolation it is a great time to get reacquainted with an old book or some new ones.

3. Respect Everyone – Treat Everyone the way you would want to be treated.

The world is so divided – maybe it has always been so – we need to remember that although we look at things from different perspectives we share more in common than you might think.  We all want a healthy, happy family.  We all want to help the poor and feed the hungry.  We all want to protect our loved ones.  We want there to be peace in the world. 

“We are all great. No matter if you think you’re dumb, fat, been bullied, we all have greatness. You gotta find the courage. It’s going to be hard work, discipline, and the non-cognitive skills – hard work, dedication, sacrifice – that will set you apart.” 

—David Goggins

Let’s respect the disparities that makes us unique and think about the other instead of hating our brothers and sisters for our differences.

4. Patience is a virtue (I am still working on this one).

I am (still) still working on this one.  I like to live a fast-paced life but the current situation has forced me to slow down a bit…..OK a lot.

“Throughout your day find a moment, however fleeting, to just sit and be still. Doesn’t matter where you are. Take a few deep breathes, put your phone on vibrate so there’s no chance of interruption, and just reflect on the series of events that took place throughout your day. When you’re working, be ruthlessly present.”

The Stoic: 9 Principles to Help You Keep Calm in Chaos by Paul Jun

Connecting with nature and taking regular walks between blocks of work seems to help.   

5. Slow Down – The more you rush at something, the longer it will take to complete.

It’s true.  Let’s concentrate on the matter at hand.

Let your mind focus on the task at hand, what you’re trying to accomplish, and do it with diligence, patience, attentiveness, and care. Sooner or later, you’ll realize how much of an asset this is to your creativity and overall quality of life.” 

The Stoic: 9 Principles to Help You Keep Calm in Chaos by Paul Jun

Measure twice and cut once…Isn’t that what they say?

6. Seize the Day – Take each day at a time.

I have been working on trying to focus on each day as it comes while also taking time to look at the long view of what is coming so I can work towards those items as well so as not be overwhelmed.   I try to deal with each day’s problems as they come instead of worrying about the future.  99% of the things that you worry about will never occur.

7. Be Kind – It doesn’t take any longer to be kind.

When I told this someone they said “it actually does take longer, but it’s still worth it.”  I guess they are right, it does take some thought and some action.  It’s those small moments of acknowledging others or empathizing with their situation that makes connect with people.  Passing people by without a friendly gesture of hello seems cold and heartless to me although sometimes I am scared to wave in fear of not being reciprocated.  I must also learn to be strong and fearless and do the right thing despite the reaction from others.

“We but mirror the world. All the tendencies present in the outer world are to be found in the world of our body. If we could change ourselves, the tendencies in the world would also change. As a man changes his own nature, so does the attitude of the world change towards him. This is the divine mystery supreme. A wonderful thing it is and the source of our happiness. We need not wait to see what others do.”

—Mahatma Gandhi

8. Be the Best you can – (truly) do the best you can.

“When you think that you are done, you’re only 40% in to what your body’s capable of doing. That’s just the limits that we put on ourselves….[When we think we have] “reached our absolute limit, we still have 60 percent more to give! That’s the governor in action! Once you know that to be true, it’s simply a matter of stretching your pain tolerance, letting go of your identity and all your self-limiting stories, so you can get to 60 percent, then 80 percent and beyond without giving up. I call this The 40% Rule, and the reason it’s so powerful is that if you follow it, you will unlock your mind to new levels of performance and excellence in sports and in life, and your rewards will run far deeper than mere material success. The 40% Rule can be applied to everything.”

—David Goggins

9. Family & Friends – The bonds of a family and true friendships are precious.

With regards to family and loved ones, now more than ever we are able to learn about each other’s strengths, weaknesses, personalities and flaws, since we are all living together 24-7 during self-isolation.  We try to accept each other unconditionally because we love each other.  No one is perfect, and our faults make us who we are.  It’s funny that the things that annoy us most about our loved ones are things that remind us of ourselves.

“I’ve listened to someone as young as 14 and someone as old as 100 talk about their close friends, and [there are] three expectations of a close friend that I hear people describing and valuing across the entire life course.” They are: “Somebody to talk to, someone to depend on, and someone to enjoy.”

—William Rawlins, the Stocker Professor of Interpersonal Communication at Ohio University

10. The 99% Rule – Most people are good, only a few are not.

If you give people a chance you will see that most want to do you no harm.  You always have to be careful about the 1% but generally speaking most people have good intentions.  With the bombardment of social media and twisted ideological politics it’s hard to image that 99% are good – shouldn’t that number be much, much lower, right!?  Wrong! 

The definition of “divide and conquer” is to make a group of people disagree and fight with one another so that they will not join together against one.

Merriam-Webster.com Dictionary, Merriam-Webster, Accessed 20 Apr. 2020.

We must remind ourselves that the news media shows the 1% over and over again.  Let’s look for sources where we can see people doing good.  People want to help each other and not hurt each other.  Do not let those in powers divide and conquer us.  For example:

“The vast majority of people, when faced with simple, clear ethical choices, choose good over bad and even good over neutral.  Imagine a stranger’s baby is about to fall off a chair next to you. You would try to catch it, right? Intuition tells you that you can count on nearly everyone else to try to catch that baby, too. Empathy is an evolutionary gift, an instinct that extends in concentric circles from the self, to loved ones, to community to countries and, for the enlightened, all of humanity — a concept dating to the ancient Greek Stoic Hierocles. Everyone is capable of widening one’s circle.”

—David G. Allan, CNN

Conclusion:

Original Post:

  1. Health is the greatest wealth you will ever have.
  2. Education is the best gift we can give you; the rest is up to you.
  3. Respect Everyone – Treat Everyone the way you would want to be treated
  4. Patience is a virtue (I am still working on this one).
  5. Slow Down – The more you rush at something, the longer it will take to complete.
  6. Seize the Day – Take each day at a time.
  7. Be Kind – It doesn’t take any longer to be kind.
  8. Be the Best you can – (truly) do the best you can.
  9. Family & Friends – The bonds of a family and true friendships are precious.
  10. The 99% Rule – Most people are good, only a few are not.

Original Post: The 10 Most Important Things I Learned from My Parents and Hope to Teach My Kids

Further Reading:

207 Inspirational David Goggins Quotes On Success and life

7 Pieces of Wisdom That Will Change the Way You Work

10 Productivity Lessons From Benjamin Franklin

Who Knows What’s Good or Bad? – David Allan – Medium

 We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


ILMA of the Week: Thomas Jefferson

Thomas Jefferson (April 13, 1743 – July 4, 1826) was an American statesman, diplomat, lawyer, architect, philosopher, and Founding Father who served as the third president of the United States from 1801 to 1809. He previously served as the second vice president of the United States from 1797 to 1801.

The principal author of the Declaration of Independence, Jefferson was a proponent of democracy, republicanism, and individual rights, motivating American colonists to break from the Kingdom of Great Britain and form a new nation; he produced formative documents and decisions at both the state and national level.

Along with the design of his own home, Monticello, Jefferson the architect is best known for his plans for the University of Virginia. Jefferson designed the initial buildings as an “academical village” in which students and professors would live, learn, and teach in community.

The original buildings were planned not only as housing for students and professors but also as models of architecture. Jefferson designed the most ambitious of the original buildings, the Rotunda, on the model of the Roman Pantheon. Today the University’s grounds are recognized as one of the most beautiful and important college campuses in the country.

Thomas Jefferson was a passionate student of architecture whose designs are among the most influential in the early history of the United States. As a student at the College of William and Mary he purchased his first book on the subject and later assembled one of the largest libraries on architecture in America. He was particularly influenced by the classical style of Andrea Palladio, who emphasized symmetry, proportion, and the use of columns. These principles then came to define the architecture of the early United States, first in Richmond, with Jefferson’s design of the State Capitol, and then in Washington, D.C., where he influenced decisions on the design of the U.S. Capitol and the White House. Jefferson is perhaps best known for his homes—Monticello, in Albemarle County, and Poplar Forest, in Bedford County—which became laboratories for Jefferson’s design interests and his many influences. Monticello, in particular, brought together Jefferson’s obsessions with classical forms and his admiration for contemporary France. During his retirement, Jefferson established the University of Virginia, creating a distinctive, U-shaped design of connected pavilions and a domed Rotunda circling a long, narrow green space. Along with Monticello, the university is considered to be one of the highlights of American architecture and cemented Jefferson’s legacy as a designer. MORE…

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Production & Productivity: Part 4/12 of the 12 P’s–– A Guideline of Design for Architects and Other People Who Want to Save the World and Design Like an Architect #ilmaBlog #Architecture

A 12 part series on the 12 P’s Doctrine: A Guideline of Design for Architects & Other People Who Want to Save the World and Design Like an Architect; developed by Frank Cunha III, AIA, NCARB, MBA.

PART FOUR

Project Resource Allocation and Resource Management 

The resources of an organization consist of people, materials, equipment, knowledge and time. Organizations typically have limited resources; therefore, tradeoffs on what project resources are expended and when are made every day within organizations. A resource allocation plan is an important tool in effective management of scarce resources. The timing of the need of those resources can be and should be determined within the project schedules. A resource plan, which describes the type of resource needed and the timing of that need, is critical to effective resource management. As the project schedule changes, the resource plan must also be flexible enough to adjust as these changes occur.

Production – During Design

Construction drawings are produced by the design team, and go through several drafts during the design phase before the final draft becomes part of the contract, which is then sent out to be bid on by contractors. The winning contractor is bound by all of the contract documentation, including the construction drawings (click here for more information).

Construction Drawings:

  • Represent the building as a whole as designed
  • Are produced by the design team
  • In a traditional construction environment, are created before the project is bid on
  • Are official contract documents
  • Are subject to mark-ups, change orders, and redlining throughout the project

Shop Drawings:

  • Represent building components as designed
  • Are produced by the contractor and subcontractors
  • In a traditional construction environment, are created after the project is awarded and before construction begins
  • Are not usually official contract documents
  • May be subject to mark-ups, change orders, and redlining

As-Built Drawings:

  • Represent the building as a whole and all its components as actually constructed
  • Are produced by the contractor and subcontractors
  • Are produced after the project is complete
  • Are sometimes mandated by the contract but are not part of the contract documents
  • May be subject to change during later renovations, but represent the final documents upon completion of initial construction

Production – During Construction

Lean Project Delivery

  • Lean construction is a method of production aimed at reducing costs, materials, time and effort.
  • Minimize the bad and maximize the good.
  • The desired outcome would be to maximize the value and output of a project while minimizing wasteful aspects and time delay.
  • Beneficial for general and subcontractors
  • Communication drives the project
  • What goals should the project team be working toward?
  • What goals can be achieved reasonably?
  • What commitments has each last planner made?
  • Has each contractor or supplier met their schedule promises?
  • How has each company performed, and what could be changed or improved if any member of the project team fails to meet a milestone?

Prefabricated Construction

  • Material Management and Installation
  • Formal Quality Program
  • Efficient Coordination of Work
  • Diligent Supervision of Work
  • Standardized Internal Inspection and Tests
  • Third Party and Consultant Reviews
  • Improved Communications
  • Experienced Teams and Worker Skills
  • Quality Culture
  • Prefab rooms allow for simultaneous progress
  • Easy assembly for large projects
  • Streamlining onsite labor processes

Types of Prefab:

  • Panelized Wood Framing
  • Timber Framing
  • Concrete Systems
  • Steel Framing
  • Modular Systems

Benefits of Prefab

  • Eco-Friendly
  • Financial Savings
  • Consistent Quality
  • Flexibility
  • Reduced Site Disruption
  • Shorter Construction Time
  • Safety

Technology and Automation

Subscribe to our blog for updates on each of the 12 doctrines established by Frank CunhaIII, AIA, NCARB, MBA.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

Join 25,809 other followers

Share this: