What is the Thinking Hand in Architecture (and why we, as architects, must defend the natural slowness and diversity of experience) #ilmaBlog #Discourse #Theory #Architecture #Design

ILMA The Thinking Hand 01

2009 Book, The Thinking Hand written byArchitect Juhani Pallasmaa

In The Thinking Hand, Architect Juhani Pallasmaa reveals the miraculous potential of the human hand. He shows how the pencil in the hand of the artist or architect becomes the bridge between the imagining mind and the emerging image. The book surveys the multiple essences of the hand, its biological evolution and its role in the shaping of culture, highlighting how the hand–tool union and eye–hand–mind fusion are essential for dexterity and how ultimately the body and the senses play a crucial role in memory and creative work. Pallasmaa here continues the exploration begun in his classic work The Eyes of the Skin by further investigating the interplay of emotion and imagination, intelligence and making, theory and life, once again redefining the task of art and architecture through well-grounded human truths.

Pallasmaa notes that, “…architecture provides our most important existential icons by which we can understand both our culture and ourselves. Architecture is an art form of the eye, the hand, the head and the heart. The practice of architecture calls for the eye in the sense of requiring precise and perceptive observation. It requires the skills of the hand, which must be understood as an active instrument of processing ideas in the Heideggeran sense. As architecture is an art of constructing and physical making, its processes and origins are essential ingredients of its very expression…”

Linking art and architecture he continues, “…as today’s consumer, media and information culture increasingly manipulate the human mind through thematized environments, commercial conditioning and benumbing entertainment, art has the mission to defend the autonomy of individual experience and provide an existential ground for the human condition. One of the primary tasks of art is to safeguard the authenticity and independence of human experience.”

Pallasmaa asserts that,

“Confidence in future architecture must be based on the knowledge of its specific task; architects need to set themselves tasks that no one else knows how to imagine. Existential meanings of inhabiting space can be articulated by the art of architecture alone. Thus architecture continues to have a great human task in mediating between the world and ourselves and in providing a horizon of understanding in the human existential condition.

The task of architecture is to maintain the differentiation and hierarchical and qualitative articulation of existential space. Instead of participating in the process of further speeding up the experience of the world, architecture has to slow down experience, halt time, and defend the natural slowness and diversity of experience. Architecture must defend us against excessive exposure, noise and communication. Finally, the task of architecture is to maintain and defend silence. The duty of architecture and art is to survey ideals and new modes of perception and experience, and thus open up and widen the boundaries of our lived world.”

(Source: https://www.wiley.com/en-us/The+Thinking+Hand%3A+Existential+and+Embodied+Wisdom+in+Architecture-p-9780470779293)

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Customer Experience

User ExperienceThe way you design your service experiences also makes an important impact on prospects and customers. Smart companies anticipate customer needs and are a few steps ahead of what comes next in the customer awareness through buying cycle. In this digital age, service and communication become the new commodity and it’s critical to design experiences to that model. Experience-based service begins with a process of communicating with customers and letting them initiate communications in return.

Getting personal with customers also enhances the customer experience. People like to buy from companies who they feel understand them and can anticipate their needs. Simple things like email birthday greetings or product suggestions based on past purchases tell customers that you remember them, value them and appreciate their business.

Intentional design is a powerful tool that provides a systematic method to explore a variety of customer interactions and touchpoints that move, engage and respond. Most of all, customer experiences have to be authentic and all touchpoint possibilities explored before recommending appropriate user design scenarios.

(Source: http://madplumcreative.com/enhancing-the-customer-experience-through-intentional-design)

Service providers are continually reshaping their offering in response to changing customer needs and demands. As customer expectations change, businesses need to rethink the experiences they deliver. Meeting new demands does not only require delivery of the right propositions – it also requires developing broader capabilities around the needs of people, across the entire ecosystem.

Adapting to the Fast-Moving Customer World

Most organizations are not designed to meet the changes that occur in their customer’s lives. Stable organizational structures, designed around the needs of the organisation, struggle to provide the flexibility needed to meet the demands of customers. These rigid structures constantly create barriers to customer interactions. They also impact customer loyalty as well as the businesses’ ability to offer more relevant products and services.

Evolving Organizational Design Around Customer Needs

From business architecture to agile methods, organizations constantly try different approaches to move the organization forward and get closer to their customers. Yes, few organizations manage to truly connect with their customer and meet their needs. There is often a gap between what customers really need, and what the organization must be capable of doing. Bringing the customer perspective into traditional change disciplines bridges this gap and enables the organization to evolve its design around its customers.

Seeing the Organization Through Your Customer’s Eyes

The complex systems, processes and connections within many organizations make it challenging to understand how different teams and departments impact customers. Looking at your organization from the outside in, rather than from the inside out, provides insight into how customers see different departments working (together). Customers using a service are generally the ones who are exposed to the entire organization, and its vast amount of divisions, departments and groups. Seeing the organization through your customer’s eyes helps to build a true picture of the organization and its impact on the customer experience.

Design the Business Around Customers’ Experience

Shifting the focus from inside out to outside in helps build an understanding of the experiences customers demand through all their interactions with the organization. Using this knowledge, the right capabilities can be planned and delivered. Designing your business around the needs of people and shifting the organization to a customer first mind-set enables you to differentiate and grow sustainably.

Experience ArchitectCustomer Experience Architecture Translated Into Organizational Capabilities

The customer experience architecture connects all aspects of the customers’ experience with the business and the organization. It maps the fluidity of customers’ needs and expectations, highlights major opportunities to have business impact and translates these into clear organizational capabilities. Understanding capabilities from a customers’ perspective helps determine which aspect delivers the core capabilities – people, process, system – and how this should be developed.

Co-Creating Your Business With Customers

Adopting a customer experience architecture driven approach puts the focus on understanding customer journeys, channel integrations and fulfilment. Adopting this approach, as opposed to the traditional organizational capability perspective, ensures the architecture of the business grows and evolves in line with customer demands. In addition, a more flexible and cohesive structure enables the business to co-create its design – as well as its experiences with its customers.

Delivering Frictionless Experiences

A customer driven architecture provides the ability to design organizational capabilities from the customer perspective. By mapping how customers use and experience a service, it becomes clear how different departments and groups within the organization impact that experience. Collaboration of a variety of skills from different disciplines leads to a cohesive design, which delivers the experiences customers demand, across all key interactions and channels.

Connecting Customers’ to the Business Capabilities

Keeping up with the constantly evolving needs of customers has become increasingly complex. To stay ahead organisations must start designing their structures and capabilities from the outside in, ensuring the business is evolves around the needs of customers. A customer experience architecture not only designs from the outside, it also brings you closer to your customers and their needs which ultimately allows for co-creating excellent experiences.

(Source: https://www.liveworkstudio.com/articles/customer-experience-architecture)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Immersive Experience in Architecture

VR-HeroPotential uses for VR and AR in architectural design are not science fiction fantasy.

New VR devices allow designers and clients inside conceptual designs. We simply load a VR device with a three-dimensional rendering of a space, and let the user experience it virtually. These VR experiences are far more effective than two-dimensional renderings at expressing the look and feel of a design. VR allows our clients to make better-educated assessments of the total sensory experience and the small details of our design. VR is helping us bridge the divide between our ideas and our clients’ perception of them, letting us effectively simulate our designs before a single nail is driven, part is molded or footing is poured. Our existing modeling programs let us render views in VR devices that are single point-of-view. The user gets to look around from that point and immerse themselves in 360-degree views. Needless to say, the ability to experience spaces before they’re paid for and built increases clients’ peace of mind about their investments.
(Source: https://www.archdaily.com/872011/will-virtual-reality-transform-the-way-architects-design)

While conversational interfaces are changing how people control the digital world,
virtual, augmented and mixed reality are changing the way that people perceive and
interact with the digital world. The virtual reality (VR) and augmented reality (AR) market is currently adolescent and fragmented. Interest is high, resulting in many novelty VR applications that deliver little real business value outside of advanced entertainment, such as video games and 360-degree spherical videos. To drive real tangible business benefit, enterprises must examine specific real-life scenarios where VR and AR can be applied to make employees more productive and enhance the design, training and visualization processes. (Source: https://www.gartner.com)
VR-Architect
Mixed reality, a type of immersion that merges and extends the technical functionality of
both AR and VR, is emerging as the immersive experience of choice providing a
compelling technology that optimizes its interface to better match how people view and
interact with their world. Mixed reality exists along a spectrum and includes head-
mounted displays (HMDs) for augmented or virtual reality as well as smartphone and
tablet-based AR and use of environmental sensors. Mixed reality represents the span of
how people perceive and interact with the digital world. (Source: https://www.gartner.com)

VR has already excelled in one area of the travel industry, in what’s been termed as ‘try
before you fly’ experiences – giving prospective tourists a chance to see their potential
destinations before booking their trip. Virgin Holidays have created Virgin Holidays
Virtual Holidays using VR and have seen a rise in sales to one of their key destinations.
In terms of creating these experiences from a design perspective, technology is both a
help and a hindrance. It’s allowing designers to get to know their audiences better, but
it’s also making it easier for businesses to lose track of the users who will eventually
own or experience the product. (Source: https://www.virgin.com/entrepreneur/how-internet-things-will-change-our-spaces)
VR-Virgin

Immersive Architecture

“Visualization matters. It’s really, really critical that people understand what they’re looking at and can contribute meaningfully to the dialogue. You want experts and non-experts to be able to derive actionable insight from what they’re seeing.”

–Matthew Krissel, Partner at KieranTimberlake

More Information:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


An Excellent Reading Experience – The Devil in the White City by Eric Larson

About “The Devil in the White City: Murder, Magic, and Madness at the Fair that Changed America” by Eric Larson

Bringing Chicago circa 1893 to vivid life, Erik Larson’s spellbinding bestseller intertwines the true tale of two men–the brilliant architect behind the legendary 1893 World’s Fair, striving to secure America’s place in the world; and the cunning serial killer who used the fair to lure his victims to their death. Combining meticulous research with nail-biting storytelling, Erik Larson has crafted a narrative with all the wonder of newly discovered history and the thrills of the best fiction.

“As absorbing a piece of popular history as one will ever hope to find.” —San Francisco Chronicle






A view of the Ferris Wheel, the star attraction of the 1893 World’s Fair. George W. Ferris invented the wheel specifically for the fair as an answer to France’s Eiffel Tower. The wheel was a wondrous feat of engineering: supported by two 140-foot steel towers and connected by a 45-foot axle, it was the largest single piece of forged steel ever made at the time. With a diameter of 250 feet and thirty-six cars holding sixty riders each, the Ferris wheel carried 1,450,000 paying customers over the course of the fair. (Photographer: Waterman / Credit: Chicago Historical Society, used by permission.)











A woman stands on the balcony of the Manufactures and Liberal Arts Building, overlooking the canal, the Machinery Building, and the Agriculture Building. The Machinery Building contained exhibits such as Whitney’s cotton gin and the world’s largest conveyor belt, as well as the fair’s power plant, which provided electricity for the entire fair. The Agriculture Building, designed by New York’s McKim, Mead & White, contained weather stations, animals, machines, tools, cigarette booths, a model of the Liberty Bell constructed with oranges, Canada’s 22,000-pound “Monster Cheese,” and the popular Schlitz Brewery booth. (Photographer: C.D. Arnold / Credit: Chicago Historical Society, used by permission.)










A view of the Court of Honor and the Statue of the Republic (also known as “Big Mary”). Created by sculptor David Chester French, the statue was a 65-foot figure atop a 40-foot base and depicted a woman covered in gold leaf holding an eagle, a globe, and a lance (symbolizing the republic of the United States). A replica of the original statue can be found today at the former site of the Administration Building, in Chicago’s Jackson Park. (Photographer: William Henry Jackson / Credit: Chicago Historical Society, used by permission.)



From Publishers Weekly….



Not long after Jack the Ripper haunted the ill-lit streets of 1888 London, H.H. Holmes (born Herman Webster Mudgett) dispatched somewhere between 27 and 200 people, mostly single young women, in the churning new metropolis of Chicago; many of the murders occurred during (and exploited) the city’s finest moment, the World’s Fair of 1893. Larson’s breathtaking new history is a novelistic yet wholly factual account of the fair and the mass murderer who lurked within it. Bestselling author Larson (Isaac’s Storm) strikes a fine balance between the planning and execution of the vast fair and Holmes’s relentless, ghastly activities. The passages about Holmes are compelling and aptly claustrophobic; readers will be glad for the frequent escapes to the relative sanity of Holmes’s co-star, architect and fair overseer Daniel Hudson Burnham, who managed the thousands of workers and engineers who pulled the sprawling fair together 0n an astonishingly tight two-year schedule. A natural charlatan, Holmes exploited the inability of authorities to coordinate, creating a small commercial empire entirely on unpaid debts and constructing a personal cadaver-disposal system. This is, in effect, the nonfiction Alienist, or a sort of companion, which might be called Homicide, to Emile Durkheim’s Suicide. However, rather than anomie, Larson is most interested in industriousness and the new opportunities for mayhem afforded by the advent of widespread public anonymity. This book is everything popular history should be, meticulously recreating a rich, pre-automobile America on the cusp of modernity, in which the sale of “articulated” corpses was a semi-respectable trade and serial killers could go well-nigh unnoticed.


BUY


MORE

Share/Bookmark


Production & Productivity: Part 4/12 of the 12 P’s–– A Guideline of Design for Architects and Other People Who Want to Save the World and Design Like an Architect #ilmaBlog #Architecture

A 12 part series on the 12 P’s Doctrine: A Guideline of Design for Architects & Other People Who Want to Save the World and Design Like an Architect; developed by Frank Cunha III, AIA, NCARB, MBA.

PART FOUR

Project Resource Allocation and Resource Management 

The resources of an organization consist of people, materials, equipment, knowledge and time. Organizations typically have limited resources; therefore, tradeoffs on what project resources are expended and when are made every day within organizations. A resource allocation plan is an important tool in effective management of scarce resources. The timing of the need of those resources can be and should be determined within the project schedules. A resource plan, which describes the type of resource needed and the timing of that need, is critical to effective resource management. As the project schedule changes, the resource plan must also be flexible enough to adjust as these changes occur.

Production – During Design

Construction drawings are produced by the design team, and go through several drafts during the design phase before the final draft becomes part of the contract, which is then sent out to be bid on by contractors. The winning contractor is bound by all of the contract documentation, including the construction drawings (click here for more information).

Construction Drawings:

  • Represent the building as a whole as designed
  • Are produced by the design team
  • In a traditional construction environment, are created before the project is bid on
  • Are official contract documents
  • Are subject to mark-ups, change orders, and redlining throughout the project

Shop Drawings:

  • Represent building components as designed
  • Are produced by the contractor and subcontractors
  • In a traditional construction environment, are created after the project is awarded and before construction begins
  • Are not usually official contract documents
  • May be subject to mark-ups, change orders, and redlining

As-Built Drawings:

  • Represent the building as a whole and all its components as actually constructed
  • Are produced by the contractor and subcontractors
  • Are produced after the project is complete
  • Are sometimes mandated by the contract but are not part of the contract documents
  • May be subject to change during later renovations, but represent the final documents upon completion of initial construction

Production – During Construction

Lean Project Delivery

  • Lean construction is a method of production aimed at reducing costs, materials, time and effort.
  • Minimize the bad and maximize the good.
  • The desired outcome would be to maximize the value and output of a project while minimizing wasteful aspects and time delay.
  • Beneficial for general and subcontractors
  • Communication drives the project
  • What goals should the project team be working toward?
  • What goals can be achieved reasonably?
  • What commitments has each last planner made?
  • Has each contractor or supplier met their schedule promises?
  • How has each company performed, and what could be changed or improved if any member of the project team fails to meet a milestone?

Prefabricated Construction

  • Material Management and Installation
  • Formal Quality Program
  • Efficient Coordination of Work
  • Diligent Supervision of Work
  • Standardized Internal Inspection and Tests
  • Third Party and Consultant Reviews
  • Improved Communications
  • Experienced Teams and Worker Skills
  • Quality Culture
  • Prefab rooms allow for simultaneous progress
  • Easy assembly for large projects
  • Streamlining onsite labor processes

Types of Prefab:

  • Panelized Wood Framing
  • Timber Framing
  • Concrete Systems
  • Steel Framing
  • Modular Systems

Benefits of Prefab

  • Eco-Friendly
  • Financial Savings
  • Consistent Quality
  • Flexibility
  • Reduced Site Disruption
  • Shorter Construction Time
  • Safety

Technology and Automation

Subscribe to our blog for updates on each of the 12 doctrines established by Frank CunhaIII, AIA, NCARB, MBA.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

Join 26,454 other followers

Share this:


The Principles of Architecture: Part 1/12 of the 12 P’s–– A Guideline of Design for Architects and Other People Who Want to Save the World and Design Like an Architect #ilmaBlog #Architecture

A 12 part series on the 12 P’s Doctrine: A Guideline of Design for Architects & Other People Who Want to Save the World and Design Like an Architect; developed by Frank Cunha III, AIA, NCARB, MBA.

PART ONE

First, we start with the solid foundation and the importance of “Principles” in the practice of Architecture.

Marcus Vitruvius Pollio, commonly known as Vitruvius, was a Roman author, architect, civil engineer and military engineer during the 1st century BC, known for his multi-volume work entitled “De Architectura.” The principles described in his book were later adopted by the Romans.

The Principles of Architecture

For someone to begin to think like an Architect or become an Architect there must be some knowledge of the principles of Architecture.  The knowledge gained is not something that can be grasped in a course or in one year, but it is something that requires a life time.  That is why an Architecture office is called a practice because the architects are practicing a craft.  There is so much to learn about so many different things.  Alas, we must start someplace and start building a solid foundation of knowledge about the topic we love.  As we learn, make (small) mistakes and adjustments we are able to hone our craft and get better with time and experience.  Having a solid foundation of knowledge and precedents will help you become a better designer.

Vitruvius’ discussion of perfect proportion in architecture and the human body led to the famous Renaissance drawing by Leonardo da Vinci of Vitruvian Man.

It has been generally assumed that a complete theory of architecture is always concerned essentially in some way or another with these three interrelated terms, which, in Marcus Vitruvius Pollio’s Latin text (De Architectura (On Architecture), a handbook for Roman architects), are given as: 

  • Firmatis (Durability) – It should stand up robustly and remain in good condition.
  • Utilitas (Utility) – It should be useful and function well for the people using it.
  • Venustatis (Beauty) – It should delight people and raise their spirits.

Nevertheless, a number of influential theorists after 1750 sought to make modifications to this traditional triad.  Architects will always tend to argue, evolve, adapt and create more concepts and principles, however,  these fundamental themes are a great starting point to start to build knowledge.

Other concepts to consider as guiding principles of good architectural design:

  • BALANCE – Balance in design is similar to balance in physics. A large shape close to the center can be balanced by a small shape close to the edge. Balance provides stability and structure to a design. It’s the weight distributed in the design by the placement of your elements.
  • PROXIMITY – Proximity creates relationship between elements. It provides a focal point. Proximity doesn’t mean that elements have to be placed together, it means they should be visually connected in some way.
  • ALIGNMENT – Allows us to create order and organization. Aligning elements allows them to create a visual connection with each other.
  • REPETITION – Repetition strengthens a design by tying together individual elements. It helps to create association and consistency. Repetition can create rhythm (a feeling of organized movement).
  • CONTRAST – Contrast is the juxtaposition of opposing elements (opposite colors on the color wheel, or value light / dark, or direction – horizontal / vertical). Contrast allows us to emphasize or highlight key elements in your design.
  • SPACE – Space in art refers to the distance or area between, around, above, below, or within elements. Both positive and negative space are important factors to be considered in every design.

Subscribe to our blog for updates on each of the 12 doctrines.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Architecture of Hope #ilmaBlog

Everyone loves when new project is conceived.  The designs that are imagined in collaboration with an Architect and an Owner is magical – it is one of the rare opportunities in life when we have some control about creating something meaningful.  An architecture project offers hope and meaning to a world filled with complexity, anxiety and chaos. 

When a project is developed there is a sense of hope that the world will be a better place.  Great architecture allows people’s lives to change for the better addressing the programmatic needs of the client while offering beautiful, harmonic spaces for the occupants.

When an Architect envisions a space for a client, they are taking a wish and making it a reality.  The new spaces that make up the built work will become treasured by those who are able to experience it.  The building itself will shape the lives of the occupants and allow them to do the things they could not before.  Great architecture is more than just a shelter or a place that addresses the client’s need.  Great architecture transcends time and space and connects us in various ways: literally connects us in real time when using the space but also interacts with the occupants as experiences are etched into the memory of the building.  There is a feeling you get when you are in a great building.  It is difficult to describe but the space itself is more than the sum of its parts.  It is a spiritual experience.  An example of such a building for me is the Guggenheim Museum by Frank Lloyd Wright or the Pennsylvania Academy of the Fine Arts by Frank Furness.

Experiencing these buildings on various occasions exemplifies how Architects can design buildings in a way that epitomizes hope.  There are two definitions for hope: (1) a feeling of expectation and desire for a certain thing to happen and (2) a feeling of trust.  Indeed, experiencing these spaces and many others the occupant does have a strong desire for something to happen and there is a feeling of trust that something will happen.  When visiting these special places, it is easy to see that designing architecture of hope allows the visitor a chance to experience a space that otherwise would be unexciting and humdrum.

When starting out on a project it is important to address this inherent desire to create someplace distinctive and extraordinary by thinking about how we as great Architects can live up to the desires and hope of our clients, even when they may not clearly see or sense the hope in the vision they are trying to construct.  Our jobs as Architects is to offer hope to our clients through our exceptional and distractive skills, blending art and science and craft when practicing Architecture.   If we can do this then we can create an Architecture filled with hope.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

Suggested Reading:

My Architecture Manifesto: “Architecture Shall Live On” by Architect @FrankCunhaIII #Architect #Design #Theory #AvantGarde #ilmaBlog #DesignTheory #Architecture

Architects Vs. “Sculptor” Architects based on a conversation btw @WJMArchitect and @FrankCunhaIII

Ophiuchus: The Serpent Bearer (Playing With Numbers)


Ask the Architect: What Are Some Questions College Administrators Should Ask Themselves Before They Start Planning for the Future? #Architect #UniversityArchitect #Ideas #Design #Planning

Sometimes Architects Design and Sometimes They Ask Questions – Here are 50 Questions for College Administrators to Consider as They Prepare to Plan For Their Future:

  1. As an institution what are we good at? What are we not so good at?
  2. Where do we want to go – What is our vision for where we are headed – academically and as a family of diverse individuals?
  3. How will people of all ages (continue to) learn in the future?
  4. How will students live, communicate, develop, work, play, share?
  5. What is the hierarchical structure of education (Provost, students, Student-Life; Administration vs Educators)?
  6. How can we address “Exclusivity Vs Inclusivity” within education (i.e., white, blue, green collars all working together)?
  7. What traditions do we want to keep?
  8. What traditions do we want to eliminate?
  9. How can we offer more value?  How can we offer more by spending less?
  10. How can we accelerate/decelerate the process – what needs to speed up and what needs to slow down?
  11. How can we attract more students from in-state and from out-of-state?
  12. How can we offer more online/hybrid and flip classroom learning?  What other educational methods should we explore?
  13. Who are our clients? Can we identify the student of the future (identity, celebrate, identity)?
  14. How can we establish a “network” of future business/professional relationships?
  15. How can we enable a positive transformation of self-awareness and development into early adulthood?
  16. The “College Experience,” what does this mean?  What will it mean in the future?
  17. How can we become more sustainable?  Are we creating a culture that values the planet?
  18. What are some sustainable strategies that we do well, what are some we need to work on?
  19. How can we utilize our spaces more efficiently during off-hours?
  20. How can we provide better connections to the outdoors, nightlife, theater, arts, dining, sports and other events?
  21. How can we offer more opportunities for community engagement?
  22. How can we consider the college campus as a living laboratory?
  23. What is the changing role of the professor/instructors?
  24. How can we form better interdisciplinary relationships from different colleges to inter-pollinate ideas with one another?
  25. How can we focus and capitalize on our strengths instead of our weakness?
  26. Is the “Tiny house” concept viable for student housing?
  27. Instead of student housing should we follow a “hotel” model?
  28. What does a student center of the future look like? What is a library of the future look like? 
  29. Can we create a new model for (higher) education so our students never stop learning/growing?
  30. Is it viable to transform from a singularly “degree” approach to a “tool box” approach where students gain the building blocks they need for that stage of their career?
  31. What are some public/private partnership opportunities?
  32. How can we promote health and wellness on our campus?
  33. How can we create a walkable campus for all our students and guests?
  34. How can we support our professors and researchers?
  35. How can we develop programs that engage the residents of the state?
  36. How can we develop a culture of caring and giving that shares the same positive values?
  37. How can we capitalize on our close relationship with local parks?
  38. How can we create a better connection with urban areas – Jersey City, Patterson, New York City, etc.?
  39. How can we become an “Innovation” district in our state?
  40. How can we start recruiting students at an earlier age?
  41. How can we better retain our students?
  42. How can we better support our students educational goals?
  43. How can we offer the best college experience for our students?
  44. How can our built facilities improve lives of the people we serve?
  45. How can our grounds improve lives of the people we serve?
  46. How can our people (bus drivers, gardeners, housekeepers, librarians, etc.) improve lives of the people we serve?
  47. How can we become an institution that others want to emulate?
  48. Is there a way that we can work with industry/business partners to leverage our role as an academic research facility?
  49. How can we make learning fun and enjoyable?
  50. How can we offer more meaning to people’s lives?

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Some Ideas to Help Aruba Become the Greenest and Happiest Island #Sustainability #Planning #Architect #Island #Eco #Green #ilmaBlog

Having recently visited Aruba earlier this year, and have fallen in love with the island, I would like to take this moment to reflect on ways that the little island nation can achieve its sustainability goals over the next several years.  Over the past few years it has come a long way but there are still many things left to be addressed if it is to be the greenest happiest little island in the Caribbean as it has set out to do.

One Happy Island

Some background information before we begin — Aruba contains 70 square miles (178.91 square kilometers) of happiness and a population of 116,600 (as of July 2018).

The tiny island gem is nestled in the warm southern Caribbean with nearly 100 different nationalities happily living together. We welcome all visitors with sunny smiles and a warm embrace.

Aruba is an island and a constituent country of the Kingdom of the Netherlands in the southern Caribbean Sea, located about 990 miles (1,600 kilometers) west of the main part of the Lesser Antilles and 18 miles (29 kilometers) north of the coast of Venezuela. It measures 20 miles (32 kilometers) long from its northwestern to its southeastern end and 6 miles (10 kilometers) across at its widest point.

Together with Bonaire and Curaçao, Aruba forms a group referred to as the ABC islands. Collectively, Aruba and the other Dutch islands in the Caribbean are often called the Dutch Caribbean. Aruba is one of the four countries that form the Kingdom of the Netherlands, along with the Netherlands, Curaçao, and Saint Maarten; the citizens of these countries are all Dutch nationals. Aruba has no administrative subdivisions, but, for census purposes, is divided into eight regions. Its capital is Oranjestad. Unlike much of the Caribbean region, Aruba has a dry climate and an arid, cactus-strewn landscape. This climate has helped tourism as visitors to the island can reliably expect warm, sunny weather. Fortunately, it lies outside Hurricane Alley.

Aruba’s economy is based largely on tourism with nearly 1.5 million visitors per year, which has contributed to Aruba’s high population density.

Despite having one of the world’s smallest populations, Aruba does have a high population density at 1,490 per square mile (575 people per square kilometer), which is more than New York state.

During the Rio +20 United Nations Conference on Sustainable Development in 2012, the island announced it aim to cover its electricity demand by 100% renewable sources by 2020. In the same year, Aruba together with other Caribbean islands became member of the Carbon War Room’s Ten Island Challenge, an initiative launched at the Rio +20 Conference aiming for islands to shift towards 100% renewable energy. The benefits of becoming 100% renewable for Aruba include: reducing its heavy dependency on fossil fuel, thus making it less vulnerable to global oil price fluctuations, drastically reducing CO2 emissions, and preserving its natural environment.

(Sources: https://www.100-percent.org/aruba/; https://en.wikipedia.org/wiki/Aruba; http://worldpopulationreview.com/countries/aruba-population)

Some of the areas where Aruba seems to be excelling includes their recent ramp up of wind power – capitalizing on the constant wind that keep the tiny island habitable.

Other areas that they can improve on include the following:

Electric Vehicles

A whopping 87 percent of the entire power generation in the Caribbean comes from imported fossil fuels, and because so much of the region’s fuel comes from faraway sources, electricity costs are four times higher than they are in the United States. The economies of these islands are basically at the whim of global oil prices

The Caribbean has some other reasons to be enthusiastic about electric cars powered by a solar electric grid. The islands, on the whole, are small and low in elevation. The vast majority of islands in the Caribbean are smaller than 250 square miles and are fairly flat, with isolated peaks at most. 

This combination makes them ideal for electric vehicles in ways that, just for example, the U.S. is not. Most electric vehicles have limited ranges, with some only offering a hundred miles or less per charge. The higher-end vehicles can go further; the Nissan Leaf boasts 151 miles per charge, the Chevy Bolt 238 miles, and the Tesla Model S 315, but with still-long waiting times for a full charge, that’s about all you’re getting in an individual trip. That’s not great for hour-plus-long commutes from American suburbs, but for smaller islands with fewer hills to climb, that sort of range is just fine.

Customers who drive electric experience common benefits.

  • Charging up with electricity will cost you less than filling your tank with gas. Clients are experiencing savings of up to 50 percent on fuel costs and very low cost of maintenance.
  • Produce no-to-low tailpipe emissions. Even when upstream power plant emissions are considered, electric vehicles are 70 percent cleaner than gas-powered vehicles.
  • “Fuel” up with clean, Aruban-produced electricity and help our island achieve more energy diversity.
  • Drivers enjoy electric vehicles’ silent motor, powerful torque and smooth acceleration.

Although “solar” vehicles would be even better for this region, the ability for the island to “leap frog” ahead of other counties by building in an electric fueling infrastructure would help set it apart from other island nations.

(Sources: http://nymag.com/developing/2018/10/more-like-electric-car-ibbean.html; https://www.elmar.aw/about-elmar/sustainable-energy-and-electric-cars)

Solar Power

Although solar has come down over the past decade I was surprised that not more individuals capitalize on the sunny region with solar roof panels.

The recently constructed government building, Cocolishi, is one of the first buildings on Aruba with a solar roof. The solar panels provide 30 kW of renewable energy.

On the rooftops of the Multifunctional Accommodation Offices (MFA) in Noord and Paradera solar panels are installed. The MFA in Noord is an energy neutral building, this means it produces the same amount of energy as it consumes. The surplus during sunny days will be added to the grid.

Previously, solar panels were installed on the Kudawecha elementary school. These panels produce 175.5 kW solar energy.

The largest school solar rooftop project is installed on the Abramham de Veer School elementary school. This rooftop project produces 976 kW renewable energy.

The Caribbean’s first solar park opened in 2015 over the parking lot of the airport in Aruba. This solar park provide 3.5 MW solar energy and is one of the first renewable energy projects making use of the Free Zone of Aruba.

In Juana Morto, a residential area complex, solar panels are installed on the rooftops of different houses. Together the solar panels generate 13 kW of green energy.

Elmar, the electricity provider of Aruba, installed solar panels on the roofs of their offices. These buildings together provide 9.8 kW solar energy.

There are different decentralized solar projects on Aruba. Together they consist of 5 MW solar PV part and 3 MW rooftop schools & public buildings PV systems. Once built per the 2017 plan, the installation will provide an additional 13.5 MW providing power for approximately 3,000 households.

Given the amount of sunshine this island receives, expanding their solar portfolio seems prudent.

(Source: https://www.freezonearuba.com/business-opportunities/solar-projects-aruba/)

Wind Power

Wind Park ‘Vader Piet’ is located on Aruba’s east coast in the Dutch Caribbean, this wind farm consists of 10 turbines with an actual capacity of 30 megawatts (MW). Aruba’s current wind power production represents about 15-20 percent of its total consumption, which places it fourth globally and still some way behind Denmark, the current global leader, which produces 26 percent of its power from wind. But today, with a second wind farm about to be deployed, Aruba is set to double its wind energy output, placing it firmly in first place.

It’s hard to believe that just a few windmills are able to produce an output of 30 megawatts of energy, suppling 126,000 MWh of electricity to the national grid each year, displacing fossil fuel-generated energy and supporting the island’s transition towards renewable energy sources.

Given that the wind is a constant, exploiting this resource seems like a profitable and intelligent thing to do.

(Source: https://www.utilitiesarubanv.com/main/embracing-the-winds-of-change/)

Off-Roading

I love that the island has embraced off-road vehicles (ORV); it is a great way to experience the beauty around us in a challenging and fun way adding to the experience.  However, it would be very wise to develop designated areas for off-road vehicles to eliminate (or at least minimize) the human impact on the beauty of this island.  Because it’s greatest commodity is the natural beauty – Sun, ocean, nature and wildlife; Aruba (and other island nations) need to consider how to balance the fun aspect with some regulations that will preserve the beauty of the natural world for future generations.

As you may already know, the use ORV’s on coastal beaches is an activity that attracts considerable controversy amongst beach users.

ORV driving is considered as main contributor to land degradation in arid regions.

The most obvious physical impacts of ORV on vegetation include plant crushing, shearing, and uprooting. Such destruction of vegetation in arid ecosystems can lead to land degradation and desertification. Desert plant species exhibit varying degrees of vulnerability to vehicle use intensity, which results in changes in vegetation composition, height, biomass, reproductive structures, cover and seedbank.

(Sources: https://serc.carleton.edu/vignettes/collection/35397.html; https://www.sciencedirect.com/science/article/pii/S1319562X18301153)

I also notice that many locals and tourists park their vehicles on the shorelines which are inhabited by indigenous plants and animals of all varieties.  This too should be lightly regulated through education or ordinances so that leaky old (or new) vehicles do not stain the natural shorelines that not only belong to us but to our grandchildren’s grandchildren as well.  We need to educate people to be more responsible and not disrupt the natural world with our cars , especially when it can be easily avoided with very little cost impact to the planning of the island.

Stormwater

Following up on vehicle management along the shorelines, another thing I noticed was stormwater runoff; which is not much but should be managed now to avoid a small accumulation over time.  It is still early enough to employ best practices and manage any future problems by building a robust infrastructure now before things get worse.  Because the island is so small it looks like much of the run off drains directly into the ocean.  Following best practices will ensure that the clear waters stay that way long into the future for the benefit and enjoyment of future generations.

Circumstances alone should prompt islanders to manage stormwater runoff:

  • Traditional community boundaries often centered on natural drainages (e.g., Hawaiian ahupua’a and Samoan village structure), so residents are aware of how land use changes can affect watershed hydrology.
  • Local economies rely on clear waters, healthy reefs, and robust fisheries; thus, BMPs designed to eliminate sediment plumes offer immediate, visible results to resource users.
  • In some locations, rainfall is the primary source of freshwater, so using BMPs like cisterns or storage chambers to collect runoff for potable and non-potable reuse makes water supply sense.
  • Tropical vegetation is fast-growing and plays a huge part in the water cycle, so stormwater management approaches that take advantage of canopy interception and evapotranspiration to reduce runoff have a high chance of success.
  • Island infrastructure is subject to big storms, rising seas, and tsunamis; therefore redundancy within the stormwater system improves resiliency.

Things that should be considered as the island faces increased development includes the engagement of “low impact development” which is an approach to land development that meets the following conditions:

  1. Avoids disturbance of existing vegetation, valuable soils, and wetlands to the maximum extent possible (e.g., minimizing site disturbance and maintaining vegetated buffers along waterways);
  2. Reduces the amount of impervious cover and, thus, stormwater runoff generated on a site through careful site planning and design techniques; and
  3. Manages runoff that is generated through structural and non-structural practices that filter, recharge, reuse, or otherwise reduce runoff from the site.

(Source: https://horsleywitten.com/pdf/Feb2014_IslandBMPGuide_wAppendix.pdf)

Desalinization

Tasked with providing water for a population which more than quadruples with tourists throughout the year, the Caribbean island of Aruba is building a new 24,000 m3/day (6,340,130 gallons) desalination facility to process seawater from beach wells. Paul Choules & Ron Sebek discuss technical details of the installation, set to replace older thermal desalination units.

This is so awesome and could become a really great way for Aruba to expand its market into other emerging countries that are facing water issues.  Abruba could use its extensive knowledge to help other arid climates deal with lack of drinking water, taking Aruba to the next level as a global leader in this realm.

(Source: https://www.waterworld.com/international/desalination/article/16201943/desalination-plant-profile-aruba-the-pearl-of-the-caribbean)

Cogeneration of Power

Justin Locke is director of the island energy program at the Carbon War Room, an international nonprofit. He said it makes sense for islands to switch to clean power.

“Islands currently pay some of the highest electricity prices in the world. At the same time, they also have some of the best renewable energy resources,” added Locke. Aruba’s plan includes building new solar and wind farms, converting waste to energy, and working to increase energy efficiency.

Aruba has set the ambitious goal of becoming the first green economy by transitioning to 100% renewable energy use. Currently, Aruba is at 20% renewable energy use.

Aruba is known for being sunny all year long and its cooling trade winds. By capitalizing on these natural resources, the island can generate renewable energy. The island is lowering its dependence on heavy fuel oil, lowering CO2 emissions, and reducing environmental pollution.

By steadily continuing its momentum with its green movement and implementing cogeneration of power production it will help the island become sustainable and resilient.

(Source: https://www.netherlandsandyou.nl/your-country-and-the-netherlands/united-states/about-us/aruba-and-you/sustainability-in-aruba)

Conclusion

Although Aruba has promised to become green it is not absolutely clear that it will be able to achieve its aggressive 2020 goals.  However, the future is bright if Aruba is able to continue on its path and starts to take these issues into greater consideration making it a premier destination for people to enjoy.  Becoming the world’s greenest island will ensure that tourism continues to flourish and that the country will continue to thrive in an environmentally-friendly way that will help restore and maintain the attributes that has made it what it has become famous for – a place for people from all over the world to come and enjoy the natural world away from the hustle and bustle of city life and experience the world in a way that seems to be reminiscent of a simpler time and offers us a chance to connect with something much larger than ourselves.  As temporary stewards for the environment it is up to us to protect that which does not belong to us so that future generations can also appreciate these valuable experiences.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


The @FelicianoCenter’s @MIXLabDesign Design Charrette for “B.E.L.A.” Summer High School Program Entailing the Redevelopment of a Significant Urban Historic Site #UrbanPlanning #Redevelopment #Business #Entrepreneur #Education #HighSchool #DesignThink #Innovation #NJEd @MontclairStateU

On July 9, 2019, in the capacity of University Architect at Montclair State University (and Alumni of the Feliciano School of Business). I had the privilege of participating in a design charrette with a local high school. The project consists of an urban redevelopment site with a precious historical building at the site. I was invited by the people who run the Montclair State University MIX Lab (Feliciano Center for Entrepreneurship), an interdisciplinary hub for transformative innovation, and digitally mediated making.

M.I.X. stands for Making and Innovating for X, where X is the unknown, that which exceeds our grasp, the future, and the open-ended nature of creativity, good design and big problems. The co-directors of MIX Lab are Iain Kerr, associate professor of Innovation Design, and Jason Frasca, entrepreneurship instructor.

I graciously accepted Jason and Ian’s invitation to participate as a guest critic along with another fellow professional, Frank Gerard Godlewski of Fellsbridge Studio LLC, who specializes in historic preservation in the area where the redevelopment project is located.  The format for the design charrette, hosted by the MIX Lab for the high school program led by high school teacher, Kevin Richburg, included: (1) The students, in groups of 4-5, presented their concepts for the redevelopment of the site (there were 5 teams); (2) the guest critics gave suggestions and further thoughts on how to further explore and develop the student’s ideas; (3) the guest critics summed up their thoughts for all the students with key take-aways.  The following is a recap of what I learned from the students (in so far as what is the most significant to them) and the key take-aways I offered the students (in no particular order of importance) from my perspective as an Architect who has been involved in the planning, design and construction of projects over the past 20-years.

What the Student Teams Focused on as Key Ideas for their Projects:

  • Historic preservation of the existing building
  • Connecting with local community
  • Local and state pride
  • Affordability
  • Sustainability
  • Celebration of diversity and inclusion
  • Love of the arts
  • Focus on the user “experience”
  • Spaces for families to enjoy
  • Entertainment
  • Accessibility to quality food and goods
  • Mixing of “Bright and Bold” historic and modern elements
  • Transformative
  • “Modern” vibe

Proposed Amenities of the Re-Development Site:

  • Supermarkets (one group proposed a two-story whole sale supermarket)
  • Open-air markets (farmer markets, etc.)
  • Retail, restaurants, food trucks
  • Open space, a square or plaza
  • Parking for visitors (possible tunnel or bridge)
  • Parking at perimeter

Types of Buildings (Programmed Spaces)

  • Main historic building’s exterior appearance
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail

Types of Exterior Spaces

  • Open spaces with green lawns and fountains
  • Places to reflect and remember
  • ·Field with stage and seating
  • Outdoor seating for restaurants
  • Areas to relax

Key Take-Aways & Ideas for Further Exploration:

  • Site plans – Delineate site elements separately from building elements (so easier to comprehend) using color or graphics (Example)
  • Floor plans – Delineate building areas/rooms with designated color so it is easier to understand program of spaces (i.e., circulation vs apartments vs retail vs support spaces, etc.) (Example)
  • Work together as a team – commemorate each other’s strengths but give everyone credit even those whose work may be behind the scenes
  • Focus on one main idea (let other ideas support the one main theme)
  • Context and Scale – Observe and learn from the surrounding community; apply those elements to the proposed project so that it complements the adjoining communities
  • Materials – Understand how the new materials can complement the historic ones (let the original historic building stand on its own and celebrate its historical significance)
  • Consider “big box” retail versus the Local “pop ups” (gentrification good and bad)
  • Parking/Transportation – As mass transportation has changed from ships to locomotives to buses and cars; look to the future as the world heads to autonomous vehicles (particularly China).  If parking is required think about how a parking lot or parking garage can be transformed in the future.  Example
  • Sustainability is important but do not forget to consider W.E.L.L. as well.  LEED/Sustainability concepts Resource 1 ; Resource 2 also check out the following link for ides about other program types for the redevelopment project Resource 3
  • Consider more technology in your projects, for instance: Smart CitiesAR/VR, and other innovate concepts, like: Immersive Experience and Virtual reality in theme park attractions. Also consider utilizing QR Codes as a teaching tool.
  • Consider developing a pedestrian mall by converting an existing street into a pedestrian friendly zone like they have done in Jersey City, NJ or Times Square, New York City, NY or Fremont Street Experience in Downtown Las Vegas, NV, the taking cars, trucks and buses off the street and giving the spaces back to the pedestrians who can enjoy it (also it would make the entire site one big site instead of two separate parcels dived by thru traffic).
  • Lastly, and not least important, when considering injecting modern elements with historic architecture, it must be considered whether the original is to remain intact or be altered.  There are interesting examples of tasteful alterations, however, the older I get the less comfortable I am with injecting new with old for the sake of “shock” value (where as a student of architecture 20 years ago the concept was more appealing).  I reminded the students of Notre Dame Cathedral in Paris, France, and the ensuing debate that is going on whether or not the renovations/upgrades should be true to the original or whether the new design should be bold and innovating and perhaps less true to the original.  Whether the designers choose to go in one direction or another much thought should be given to preserving the historical elements of our precious structures because they are irreplaceable (think Grand Central Station in New York City, NY, which acted as a catalyst for the preservation movement).  Click here to read about the history of the Preservation Battle of Grand Central Station.

Overall, I was impressed by the talent and creativity of all the students and I was pleased with the quality of their presentations. I hope I was able to contribute in some small way to the success of their respective projects.  The high school student participants’ contributions to the build environment would be welcomed by the design and construction industry, since the students are willing to understand and develop their skills in the area of deep thought, innovation, design, construction and socio-economic concepts at an early age.  I gladly encouraged each and every one of them by letting them know that if they choose a career in architecture, engineering, real-estate development, construction or related field that they would certainly all be able to achieve their goals based on their willingness and eagerness to learn and present their visions and concepts.   I hope my involvement was as rewarding for the students as it was for me.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


@FrankCunhaIII Speaking at EAST COAST GREEN on June 21, 2019 About Sustainability at College Campuses #UniversityArchitect #Campus #GreenArchitect #Eco #ilmaBlog

Network, Learn, & be Inspired by the Living Building Challenge certified Willow School, hosting AIA-NJ’s 9th annual East Coast Green conference 6/21.

Want to see a rainwater catchment system that flushes all toilets, solar energy that provides 100% of a building’s power, healthy materials, design for optimal daylight and fresh air and a sustainable managed site that includes a man-made wetland to treat all waste onsite and a lush variety of gardens instead of lawn?

4 Education tracks in Energy, Human Experience, Materials, and Certifications provide continuing education credits throughout the day. Join us and mingle with Architects, Interior Designers, Engineers, Building Owners, Contractors and related industry professionals.

Local/organic breakfast, lunch and evening reception with open bar (beer/wine) included! www.eastcoast-green.com Sponsorship and registration available!

Click on the links below for more information about East Coast Green

Speakers: https://eastcoast-green.com/speakers 

Schedule of Events: https://eastcoast-green.com/schedule/


Ask the Architect: Why Does Indoor Air Quality Matter?#LEED #WELL #Health #Wellness #Safety #Architect #ilmaBlog

Simply put, indoor air quality matters because human beings are spending more and more time indoors. It is becoming more important than ever to make sure that the buildings that we design, construct and occupy are suitable and safe for the occupants. The following article will draw on both research and experience in the design and construction of high performance buildings to help elaborate on this simple response.

Interesting Facts To Consider About Indoor Air Quality:

  • Indoor air often contains 4X to 10X the amount of pollutants of outdoor air.
  • Many studies have linked exposure to small particles (PM 2.5—defined as airborne particles smaller than 2.5 microns) with heart attacks, cardiac arrhythmias, strokes, chronic obstructive pulmonary disease, worsened symptoms of asthma, and an increased risk of respiratory illness.
  • The World Health Organization says that particulate matter contributes to about 800,000 premature deaths each year, making it the 13th leading cause of death worldwide.

The built environment around us plays a fundamental role in our overall well-being, particularly the indoor spaces that we inhabit to live, work, learn, play and pray, since most of us spend about 90% of our time indoors.  The buildings that we as Architects design and construct have a distinctive capability to positively or negatively impact our health and wellbeing. The air that we breathe inside a building can have a greater consequence on our health.  Unfortunately, many contaminants are not visible in the air, so we might not know that they are there.  Inhaling air or poor quality can lead to a number of health conditions, including but not limited to:  allergies, respiratory disorders, headaches, sore throat, lethargy and nausea.

Sick Building Syndrome

According to the EPA, sick building syndrome (SBS) is used to describe a situation in which the occupants of a building experience acute health- or comfort-related effects that seem to be linked directly to the time spent in the building. No specific illness or cause can be identified. The complainants may be localized in a particular room or zone or may be widespread throughout the building.

LEED Requirements

As more buildings are LEED certified, here are some things to consider about your next project:

To contribute to the comfort and well-being of building occupants by establishing minimum standards for indoor air quality (IAQ) after construction and during occupancy, USGBC LEED v4 requires that the project meet one of the following:

  • Minimum indoor air quality performance: Option 1. ASHRAE Standard 62.1–2010 or Option 2. CEN Standards EN 15251–2007 and EN 13779–2007.
  • Indoor air quality assessment: Path 1 Option 1. Flush-out, or Path 2. Option 1. During occupancy, or Path 2. Option 2. Air testing – Note: these cannot be combined.

Occupants are increasingly paying more attention to the conditions of their work environment as it relates to health and wellness. This is especially the case for researchers and their lab environments. We see surging growth in universities adopting lab design programs such as Smart Labs which places an emphasis in the indoor environment quality of the lab and through certification programs as:

We need to have a real-time measurement of the all contaminants of inside air and match that with real time control of the outside air coming into the environment. Ideally, we need to design and build facilities that:

  • Bring in lots of outside air—but only exactly where and when we need it.
  • Measures and controls more than just temperature and CO2.
  • Displays the ventilation performance for the building’s occupants.

Health and Cognitive FunctionPerformance Enhancements

Cognitive functions encompass reasoning, memory, attention, and language and lead directly to the attainment of information and, thus, knowledge. United Technologies and The Harvard School of Public Health prepared a study that was designed to simulate indoor environmental quality conditions in green and conventional buildings and evaluate the impacts on an objective measure of human performance—cognitive function.  The findings of the report concluded that the impact of the indoor air quality on the productivity of the occupants which revealed the following benefits:

  • Lowering the levels of CO2 and VOCs resulted in their participants scoring 61% higher on cognitive function tests compared with those in conventional offices.
  • There was a 101% improvement on their cognitive function tests when the ventilation levels were doubled above the standard ASHRAE prescribed levels.
  • Information usage scores were 299% higher than conventional offices when the ventilation rates were doubled.

The conclusion of this study is very clear: verified ventilation performance will increase employee and student performance.

Sources & References:

Is Your Building Ventilated Like It’s 1978? By Tom Kolsun

USGBC V4 Requirements for indoor environmental quality

Further Reading:

EPA – An Office Building Occupants Guide to Indoor Air Quality

#IAQmatters

EPA – Indoor Air Quality

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

For More Questions and Answers please check out:
Architects @WJMArchitect And @FrankCunhaIII Respond to ILMA Fan’s Questions “ASK THE ARCHITECT”

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Will Higher Education Look Like 5, 10 or 20 Years From Now? Some Ways Colleges Can Reinvent Themselves #iLMA #eMBA #Innovation #Technology #Planning #Design #HigherEducation #HigherEd2030 #University #Architect

Introduction

Change is a natural and expected part of running a successful organization. Whether big or small, strategic pivots need to be carefully planned and well-timed. But, how do you know when your organization is ready to evolve to its next phase? Anyone that listens, watches, or reads the news knows about the rising cost of higher education and the increasing debt that education is putting on students and alumni and their families.

At a time when education is most important to keep up with increasing technological changes, institutions need to pivot or face imminent doom in an ever increasing competitive environment. Competition can come from startups or external factors in the higher education market therefore it is increasingly necessary for institutions of higher learning to take a different approach to their business operations.

This post will focus on:

  • Current Trends
  • Demographic Shifts
  • Future of Higher Education (and impacts on University Facilities & Management)
    • Changing Assumptions
    • Implications for the Physical Campus
    • Changing Trajectory
    • More Trends in Higher Education (Towards 2030)
  • Driving Technologies
  • External Forces

Current Trends

  • Online education[i] has become an increasingly accepted option, especially when “stackable” into degrees.
  • Competency-based education lowers costs and reduces completion time for students.
  • Income Share Agreements[ii] help students reduce the risk associated with student loans.
  • Online Program Manager organizations benefit both universities and nontraditional, working-adult students.
  • Enterprise training companies are filling the skills gap by working directly with employers.
  • Pathway programs facilitate increasing transnational education[iii], which serves as an additional revenue stream for universities.

Demographic Shifts

According to data from the National Clearinghouse and the Department of Education[iv]:

  • The Average Age of a College/University Student Hovers Around Twenty-Seven (Though That Is Decreasing as The Economy Heats Up)
  • 38% of Students Who Enrolled In 2011 Transferred Credits Between Different Institutions At Least Once Within Six Years.
  • 38% of Students Are Enrolled Part-Time.
  • 64% of Students Are Working Either Full-Time or Part-Time.
  • 28% of Students Have Children of Their Own or Care For Dependent Family Members.
  • 32% of Students Are from Low-Income Families.
  • The Secondary Education Experience Has an Increasingly High Variation, Resulting In Students Whose Preparation For College-Level Work Varies Greatly.

Future of Higher Education (and impacts on University Facilities & Management)

The future of higher education depends on innovation. 

University leaders who would risk dual transformation are required to exercise full commitment to multiple, potentially conflicting visions of the future. They undoubtedly confront skepticism, resistance, and inertia, which may sway them from pursuing overdue reforms.[v]

Change is upon us.

“All universities are very much struggling to answer the question of: What does [digitization[vi]] mean, and as technology rapidly changes, how can we leverage it?” . . . . Colleges afraid of asking that question do so at their own peril.”[vii]

James Soto Antony, the director of the higher-education program at Harvard’s graduate school of education.

Changing Assumptions

Until recently the need for a physical campus was based on several assumptions:

  • Physical Class Time Was Required
  • Meaningful Exchanges Occurred Face to Face
  • The Value of an Institution Was Tied to a Specific Geography
  • Books Were on Paper
  • An Undergraduate Degree Required Eight Semesters
  • Research Required Specialized Locations
  • Interactions Among Students and Faculty Were Synchronous

Implications for the Physical Campus

  • Learning – Course by course, pedagogy is being rethought to exploit the flexibility and placelessness of digital formats while maximizing the value of class time.
  • Libraries – Libraries are finding the need to provide more usable space for students and faculty.  Whether engaged in study, research or course projects, the campus community continues to migrate back to the library.
  • Offices – While the rest of North America has moved to mobile devices and shared workspaces, academic organizations tend to be locked into the private, fixed office arrangement of an earlier era – little changed from a time without web browsers and cell phones. 
  • Digital Visible – From an institutional perspective, many of the implications of digital transformation are difficult to see, lost in a thicket of business issues presenting themselves with increasing urgency. 

Changing Trajectory

University presidents and provosts are always faced with the choice of staying the course or modifying the trajectory of their institutions.  Due to failing business models, rapidly evolving digital competition and declining public support, the stakes are rising.  All should be asking how they should think about the campus built for the 21st century.[viii]  J. Michael Haggans[ix] makes the following recommendations:

  • Build no net additional square feet
  • Upgrade the best; get rid of the rest
  • Manage space and time; rethink capacity
  • Right-size the whole
  • Take sustainable action
  • Make campus matter

More Trends in Higher Education (Towards 2030)

  • The Rise of The Mega-University[x]
  • ; Public Private Partnerships (P3’s) Procurement Procedures Will Become More Prevalent
  • More Colleges Will Adopt Test-Optional Admissions
  • Social Mobility Will Matter More in College Rankings
  • Urban Colleges Will Expand[xi] — But Carefully
  • Financial Crunches Will Force More Colleges to Merge
  • The Traditional Textbook Will Be Hard to Find; Free and Open Textbooks
  • More Unbundling and Micro-Credentials
  • Continued Focus on Accelerating Mobile Apps
  • Re-Imagining Physical Campus Space in Response to New Teaching Delivery Methods
  • Transforming the Campus into A Strategic Asset with Technology
  • Education Facilities Become Environmental Innovators
  • Ethics and Inclusion: Designing for The AI Future We Want to Live In
  • Visibility (Transparency) And Connectedness
  • Sustainability from Multiple Perspectives
  • Better Customer Experiences with The Digital Supply Chain
  • Individualized Learning Design, Personalized Adaptive Learning
  • Stackable Learning Accreditation
  • Increased Personalization: More Competency-Based Education They’ll Allow Students to Master A Skill or Competency at Their Own Pace.
  • Adaptation to Workplace Needs They’ll Adapt Coursework to Meet Employer Needs for Workforce Expertise
  • Greater Affordability and Accessibility They’ll Position Educational Programs to Support Greater Availability.
  • More Hybrid Degrees[xii]
  • More Certificates and Badges, For Example: Micro-Certificates, Offer Shorter, More Compact Programs to Provide Needed Knowledge and Skills Fast[xiii]
  • Increased Sustainable Facilities – Environmental Issues Will Become Even More Important Due to Regulations and Social Awareness; Reduced Energy Costs, Water Conservation, Less Waste
  • Health & Wellness – Physical, Spiritual and Metal Wellbeing
  • Diversity and Inclusion Will Increase
  • Rise of The Micro-Campus[xiv] And Shared Campuses[xv]
  • E-Advising to Help Students Graduate
  • Evidence-Based Pedagogy
  • The Decline of The Lone-Eagle Teaching Approach (More Collaboration)
  • Optimized Class Time (70% Online, 30% Face to Face)
  • Easier Educational Transitions
  • Fewer Large Lecture Classes
  • Increased Competency-Based and Prior-Learning Credits (Credit for Moocs or From “Real World” Experience)[xvi]
  • Data-Driven Instruction
  • Aggressive Pursuit of New Revenue
  • Online and Low-Residency Degrees at Flagships
  • Deliberate Innovation, Lifetime Education[xvii]
  • The Architecture of The Residential Campus Will Evolve to Support the Future.
  • Spaces Will Be Upgraded to Try to Keep Up with Changes That Would Build In Heavy Online Usage.
  • Spaces Will Be Transformed and Likely Resemble Large Centralized, Integrated Laboratory Type Spaces. 
  • Living-Learning Spaces in Combination Will Grow, But On Some Campuses, Perhaps Not In The Traditional Way That We Have Thought About Living-Learning To Date.

Driving Technologies:

  • Emerging Technologies – Such as Augmented Reality, Virtual Reality, And Artificial Intelligence – Will Eventually Shape What the Physical Campus Of The Future Will Look Like, But Not Replace It.[xviii]
  • Mobile Digital Transformation[xix]
  • Smart Buildings and Smart Cities[xx]
  • Internet of Things
  • Artificial Intelligence (AI), Including Natural Language Processing
  • Automation (Maintenance and Transportation Vehicles, Instructors, What Else?)
  • Virtual Experience Labs, Including: Augmented Reality, Virtual Reality Learning, And Robotic Telepresence 
  • More Technology Instruction and Curricula Will Feature Digital Tools and Media Even More Prominently
  • New Frontiers For E-Learning, For Example, Blurred Modalities (Expect Online and Traditional Face-To-Face Learning to Merge)[xxi]
  • Blending the Traditional; The Internet Will Play Bigger Role in Learning
  • Big Data: Colleges Will Hone Data Use to Improve Outcomes

External Forces:

  • [xxii]: Corporate Learning Is A Freshly Lucrative Market
  • Students and Families Will Focus More on College Return On Investment, Affordability And Student Loan Debt
  • [xxiii]
  • Greater Accountability; Schools will be more accountable to students and graduates
  • Labor Market Shifts and the Rise of Automation
  • Economic Shifts and Moves Toward Emerging Markets
  • Growing Disconnect Between Employer Demands and College Experience 
  • The Growth in Urbanization and A Shift Toward Cities 
  • Restricted Immigration Policies and Student Mobility
  • Lack of Supply but Growth in Demand
  • The Rise in Non-Traditional Students 
  • Dwindling Budgets for Institutions[xxiv]
  • Complex Thinking Required Will Seek to Be Vehicles of Societal Transformation, Preparing Students to Solve Complex Global Issues

Sources & References:


[i] Online education is a flexible instructional delivery system that encompasses any kind of learning that takes place via the Internet. The quantity of distance learning and online degrees in most disciplines is large and increasing rapidly.

[ii] An Income Share Agreement (or ISA) is a financial structure in which an individual or organization provides something of value (often a fixed amount of money) to a recipient who, in exchange, agrees to pay back a percentage of their income for a fixed number of years.

[iii] Transnational education (TNE) is education delivered in a country other than the country in which the awarding institution is based, i.e., students based in country Y studying for a degree from a university in country Z.

[iv] Article accessed on April 16, 2019: https://er.educause.edu/articles/2019/3/changing-demographics-and-digital-transformation

[v]Article accessed on April 16, 2019: https://ssir.org/articles/entry/design_thinking_for_higher_education

[vi] Digitization is the process of changing from analog to digital form.

[vii] Article accessed on April 16, 2019:  https://qz.com/1070119/the-future-of-the-university-is-in-the-air-and-in-the-cloud

[viii] Article accessed on April 16, 2019: http://c21u.gatech.edu/blog/future-campus-digital-world

[ix] Michael Haggans is a Visiting Scholar in the College of Design at the University of Minnesota and Visiting Professor in the Center for 21st Century Universities at Georgia Institute of Technology.  He is a licensed architect with a Masters of Architecture from the State University of New York at Buffalo.  He has led architectural practices serving campuses in the US and Canada, and was University Architect for the University of Missouri System and University of Arizona.

[x] Article accessed on April 16, 2019:  https://www.chronicle.com/interactives/Trend19-MegaU-Main

[xi] Article accessed on April 16, 2019:  https://www.lincolninst.edu/sites/default/files/pubfiles/1285_wiewel_final.pdf

[xii] Article accessed on April 16, 2019: https://www.fastcompany.com/3046299/this-is-the-future-of-college

[xiii] Article accessed on April 16, 2019: https://www.govtech.com/education/higher-ed/Why-Micro-Credentials-Universities.html

[xiv] Article accessed on April 16, 2019: https://global.arizona.edu/micro-campus

[xv] Article accessed on April 16, 2019: https://evolllution.com/revenue-streams/global_learning/a-new-global-model-the-micro-campus

[xvi] Article accessed on April 16, 2019:  https://www.chronicle.com/article/The-Future-Is-Now-15/140479

[xvii] Article accessed on April 16, 2019:  https://evolllution.com/revenue-streams/market_opportunities/looking-to-2040-anticipating-the-future-of-higher-education

[xviii] Article accessed on April 16, 2019: https://www.eypae.com/publication/2017/future-college-campus

[xix] Article accessed on April 16, 2019: https://edtechmagazine.com/higher/article/2019/02/digital-transformation-quest-rethink-campus-operations

[xx] Article accessed on April 16, 2019: https://ilovemyarchitect.com/?s=smart+buildings

[xxi] Article accessed on April 16, 2019: https://www.theatlantic.com/education/archive/2018/04/college-online-degree-blended-learning/557642

[xxii] Article accessed on April 16, 2019: https://qz.com/1191619/amazon-is-becoming-its-own-university

[xxiii] Article accessed on April 16, 2019: https://www.fastcompany.com/3029109/5-bold-predictions-for-the-future-of-higher-education

[xxiv] Article accessed on April 16, 2019: https://www.acenet.edu/the-presidency/columns-and-features/Pages/state-funding-a-race-to-the-bottom.aspx

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Makes Notre Dame Cathedral So Important as a Work of Architecture? #NotreDame #Architecture #Design #History

Notre Dame Cathedral is a medieval Catholic cathedral on the Île de la Cité located in Paris, France. The cathedral is considered to be one of the finest examples of Gothic architecture. The innovative use of the rib vault and flying buttress, the enormous and colorful rose windows, gothic arched windows and doorways, and the naturalism and abundance of its sculptural decoration all set it apart from earlier Romanesque architecture.

Notre Dame Cathedral is considered to be of the most well-known church buildings in the world. Construction started in 1163 and finished in 1345. It is devoted to Virgin Mary and it is one of the most popular monuments in Paris. The cathedral underwent many changes and restorations throughout time.

The location of this cathedral has a long history of religious cult. The Celts celebrated rituals there before the Romans erected a temple devoted to Jupiter. It was also the place were the first Christian church, Saint Étienne, was built. It was founded by Childeberto I in 528 AD. In 1160 the church was deemed and in 1163 the construction of the cathedral started. Opinions differ as to whether Sully or Pope Alexander III laid the foundation stones of the cathedral. Several architects took part in the construction, so differences in style are clearly seen.

There are around 13 million people who visit the Notre Dame de Paris Cathedral every year, which means this is an average of 30,000 people every day, growing to around 50,000 pilgrims and visitors who enter the cathedral on peak days.

History

Construction began in 1163 after Pope Alexander III laid the cornerstone for the new cathedral. By the time of Bishop Maurice de Sully’s death in 1196, the apse, choir and the new High Altar were all finished, while the nave itself was nearing completion. In 1200, work began on the western facade, including the west rose window and the towers, all of which were completed around 1250, along with a new north rose window. Also during the 1250s, the transepts were remodeled in the latest style of Rayonnant Gothic architecture by architects Jean de Chelles and Pierre de Montreuil, and the clerestory windows were enlarged. The last remaining elements were gradually completed during the following century.

The Cathedral of Notre-Dame de Paris was built on a site which in Roman Lutetia is believed to have been occupied by a pagan temple, and then by a Romanesque church, the Basilica of Saint Étienne, built between the 4th century and 7th century.

Notre-Dame Cathedral suffered damage and deterioration through the centuries, and after the French Revolution it was rescued from possible destruction by Napoleon, who crowned himself emperor of the French in the cathedral in 1804. Notre-Dame underwent major restorations by the French architect E.-E. Viollet-le-Duc in the mid-19th century. The cathedral is the setting for Victor Hugo’s historical novel Notre-Dame de Paris (1831).

Gothic Cathedral Builders

With the aid of only elementary drawings and templates, master stone masons meticulously directed the construction of the great medieval cathedrals of Europe. The practices of intuitive calculation, largely based on simple mathematical ratios and structural precedent, were closely guarded and passed between successive generations of masons. Specific site conditions and the insatiable demand by church authorities for higher and lighter buildings provided the impetus for continual development.

The Spire

Symbolically, spires have two functions. Traditionally, one has been to proclaim a martial power of religion. A spire, with its reminiscence of the spear point, gives the impression of strength. The second is to reach up toward the skies. The celestial and hopeful gesture of the spire is one reason for its association with religious buildings.

Holy Christian Relics

The Relics of Sainte-Chapelle are relics of Jesus Christ acquired by the French monarchy in the Middle Ages and now conserved by the Archdiocese of Paris. They were originally housed at Sainte-Chapelle in Paris and are now in the cathedral treasury of Notre Dame de Paris.  Relics believed to be a piece of the cross on which Jesus was crucified, as well as the Crown of Thorns he wore, have been kept at the cathedral for centuries. The braided circle held together by golden thread has about 70 or so thorns attached. The relics were obtained from the Byzantine Empire in 1238 and brought to Paris by King Louis IX.

Wood Construction

The framing of Notre-Dame de Paris is certainly one of the oldest structures in Paris with that of Saint-Pierre de Montmartre (1147).

It is poetically and endearingly called the Forest because of the large number of wood beams that had to be used to set it up.  Each beam coming from a different tree. It is a framework of oaks. Its measurements are very impressive: More than 328 feet (100 meters) long, 43  feet (13 meters) wide in the nave, 130 feet (40 meters) in the transept and 33 feet (10 meters) high.

In the choir, there existed a first frame with woods felled around 1160-1170 (it is estimated that some could have 300 to 400 years, which brings us to the 8th or 9th centuries !!!). This first frame has disappeared, but woods were reused in the second frame installation in 1220.

In the nave, the carpentry is set up between 1220 and 1240.  The work of the nave began between 1175 and 1182, after the consecration of the choir. The work stops after the fourth bay leaving the nave unfinished while the elevation of the facade is begun in 1208. The work of the nave will be resumed in 1218 to counter the façade.

On this frame rests a lead roof consisting of 1326 tables 0.20 inches (5 mm) thick weighing 210 tons . In the eleventh and twelfth centuries, roofs were covered with flat tile churches because of the abundant clay deposits. Paris, being far from such deposits, was preferred to lead. In 1196, Bishop Maurice de Sully bequeathed 5,000 pounds for the purchase of lead.

Although the carvings of the choir and the nave went through the centuries, those of the transepts and the spire were redone in the middle of the 19th century during the great restoration campaign of the cathedral under the direction of The Duke . Made according to the principles then in force, they differ from the framework of the choir and the nave, in particular as regards the dimensions of the beams which are much more imposing than those of the Middle Ages and more distant.

The Facade

Notre Dame’s iconic facade evokes a harmony of design based on nature and represents a level of detailed craftsmanship that no longer subsists in contemporaneous architecture. From Georges-Eugène Haussmann’s immense plaza the visitor is captivated by a stunning view of the facade’s three elaborately-decorated portals.

The left-side portal of the Virgin depicts the life of the Virgin Mary, as well as a coronation scene and an astrological calendar. The central portal depicts the Last Judgement in a kind of vertical triptych. The first and second panels show the resurrection of the dead, the judgment, Christ, and apostles.The pièce de résistance is the reigning Christ which crowns the scene.

The portal of Saint-Anne on the right features Notre Dame’s oldest and finest surviving statuary (12th century) and depicts the Virgin Mary sitting on a throne, the Christ child in her arms. Above the portals is the gallery of kings, a series of 28 statues of the kings of Israel.

The magnificent exterior of Notre Dame’s West rose window depicts the biblical figures of Adam and Eve on the outer rim. It measures an impressive 33 feet (10 meters) in diameter, which was the largest rose window constructed in its day.

The final level of the facade before reaching the towers is the “Grande Galerie” which connects the two towers at their bases. Fierce demons and birds decorate the grand gallery but are not easily visible from the ground.

The Cathedral Towers

Notre Dame’s ornate towers became a legend thanks to 19th-century novelist Victor Hugo, who invented a hunchback named Quasimodo and had him inhabit the South tower in “The Hunchback of Notre Dame”.

The towers are 223 feet (68 meters) tall offering remarkable views of the Ile de la Cité, the Seine River and the entire city itself.  After climbing 400 stairs you are rewarded with gargoyles of grimacing demons and menacing carrion birds. The South tower houses Notre Dame’s infamous 13-ton bell.

You can also admire the detail of Notre Dame’s magnificent spire, destroyed during the revolution and restored by Viollet-le-Duc.

The Magnificent Interior

Medieval architects represented their idea of human earthliness in relation to heaven through structures that were at once grandiose and ethereal–and Notre Dame’s interior achieves exactly this. The cathedral’s long halls, vaulted ceilings, and soft light filtered through intricate stained glass help us understand the medieval perspective of humanity and divinity. There is no access to the cathedral’s upper levels, obliging visitors to remain earthbound, gazing upward. The experience is breathtaking, especially on a first visit.

The cathedral’s three stained-glass rose windows are the interior’s outstanding feature. Two are found in the transept: the North rose window dates to the 13th century and is widely considered to be the most stunning. It depicts Old Testament figures surrounding the Virgin Mary. The South rose window, meanwhile, depicts the Christ surrounded by saints and angels. More modern stained glass, dating to as late as 1965, is also visible around the cathedral.

Notre Dame’s organs were restored in the 1990’s and are among the largest in France.

The choir includes a 14th-century screen which portrays the biblical Last Supper. A statue of the Virgin and Christ child, as well as funeral monuments to religious figures, are also found here.

Near the rear, Notre Dame’s treasury includes precious objects, such as crosses and crowns, made of gold and other materials.

Countless processions and historical moments took place inside the cathedral, including the crowning of Henry VI, Mary Stuart, and Emperor Napoleon I.

Sources:

http://www.notredamedeparis.fr/en/la-cathedrale/architecture/la-charpente

https://www.tripsavvy.com/notre-dame-cathedral-highlights-and-facts-1618863

https://en.wikipedia.org/wiki/Haussmann%27s_renovation_of_Paris

https://en.wikipedia.org/wiki/Notre-Dame_de_Paris

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Augmented Reality Enables Children to Learn in the Real World #ilmaBlog #Education #VR #Technology #Classroom #MyUniversityArchitect #Architect

MBDs (Mobile broadband devices, or smartphones) allow students to access and collect additional information and clues. Students use EcoMOBILE activities developed with an augmented reality application, to navigate between “hotspots,” view information, answer questions, and observe virtual media overlaid on the physical pond.

Students can capture pictures, video, or voice recordings and take these back to the classroom to help make sense of school lessons. Through augmented reality we provide students with visualizations that would not otherwise be apparent in the natural environment (for example, virtual x-ray vision so that they can “see” a virtual carbon atom as it moves through the processes of photosynthesis and respiration).

These augmented reality experiences allow students to conceptualize and discuss processes and complex relationships that are otherwise difficult to describe or visualize.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook