Benefits of Using Digital Twins for Construction

Technologies like augmented reality in construction are emerging to digitalize the construction industry, making it significantly more effective.

What if we could have instant access to all the information about a construction site, down to smallest details about every person, tool, and bolt? What if we could always be sure about the final measurements of a beam or that soil volumes in the cuts are close to those of the fills? What if we could always track how fast the supply of materials runs out, and re-order supplies automatically?

All this is achievable with a digital twin — a concept of having a real-time digital representation of a physical object.

The following are some real-time digital twins applications on construction sites.

3d-model

Automated Progress Monitoring

Progress monitoring verifies that the completed work is consistent with plans and specifications. A physical site observation is needed in order to verify the reported percentage of work done and determine the stage of the project.

By reconstructing an as-built state of a building or structure we can compare it with an as-planned execution in BIM and take corresponding actions to correct any deviations. This is usually done by reconstructing geometry of a building and registering it to the model coordinate systems, which is later compared to an as-planned model on a shape and object level.

Often data for progress monitoring is collected through the field personnel and can be hugely subjective. For example, the reported percentage of work done can be faster in the beginning and much slower close to the end of the project. People are often initially more optimistic about their progress and the time needed to finish the job.

Hence, having automated means of data collection and comparison means that the resulting model to as-designed BIM models is less liable to human error. Digital twins solve the common construction process problems.

As-Built vs As-Designed Models

With a real-time digital twins, it is possible to track changes in an as-built model — daily and hourly. Early detection of any discrepancies can lead to a detailed analysis of historical modeling data, which adds an additional layer of information for any further decision-making processes.

The project manager can then reconstruct the steps that led to the error and make changes in the future work schedule in order to prevent any similar mistakes from occurring. They can also detect under-performers and try to fix the cause of the problem earlier in the project or plan the necessary changes to the budget and timescale of the whole project.

Resource Planning and Logistics

According to the Construction Industry Institute, about 25% of productive time is wasted on unnecessary movement and handling of materials.

Digital twin technology provides automatic resource allocation monitoring and waste tracking, allowing for a predictive and lean approach to resource management. With digital twin technology companies would avoid over-allocation and dynamically predict resource requirements on construction sites, thus avoiding the need to move resources over long distances and improving time management.

Safety Monitoring

The construction industry is one of the most dangerous sectors in the world. According to the Bureau of Labor Statistics in the United States, more than four thousand construction workers died on-site between 2008 and 2012.

The real-time site reconstruction feature digital twins allows the industry’s companies to track people and hazardous places on a site, so as to prevent inappropriate behavior, usage of unsafe materials, and activity in hazardous zones. A company can develop a system of early notification, letting a construction manager know when a field worker is located in dangerous proximity to working equipment and sending a notification about nearby danger to a worker’s wearable device.

Microsoft recently shared a great vision of how AI combined with video cameras and mobile devices can be used to build an extensive safety net for the workplace.

Quality Assessment

Image-processing algorithms make it possible to check the condition of concrete through a video or photographic image. It is also possible to check for cracks on columns or any material displacement at a construction site. This would trigger additional inspections and thus help to detect possible problems early on.

See an example of how 2D images using 3D scene reconstruction can be used for concrete crack assessments.

Optimization of Equipment Usage

Equipment utilization is an important metric that construction firms always want to maximize. Unused machines should be released earlier to the pool so others can use them on other sites where they are needed. With advanced imaging and automatic tracking, it is possible to know how many times each piece of machinery has been used, at what part of the construction site, and on what type of the job.

Monitoring and Tracking of Workers

Some countries impose tough regulations on how to monitor people presence on a construction site. This includes having a digital record of all personnel and their location within the site, so that this information could be used by rescue teams in case of emergency. This monitoring is another digital twins application. Still, it is better to integrate digital twin-based monitoring with an automatic entry and exit registration system, to have a multi-modal data fused into a single analytics system.

Getting Data for Digital Twins

Some ways to gather data to be used for digital twins includes the following:

  1. Smartphone Cameras
  2. Time-Lapse Cameras
  3. Autonomous UAV and Robots
  4. Video Surveillance Cameras
  5. Head-mounted Cameras and Body Cameras

Image data processing algorithms for digital twins can be created with the following methods:

  1. 3D Reconstruction: Conventional Photogrammetry
  2. 3D Reconstruction: Structure from Motion
  3. Object Detection and Recognition
  4. Localization
  5. Object Tracking

(Source: https://www.intellectsoft.net/blog/advanced-imaging-algorithms-for-digital-twin-reconstruction)

From an Investor’s Viewpoint

On projects to date, this approach has proven to save time, reduce waste and increase efficiencies.

From a Standardization Proponent’s Viewpoint

Open, sharable information unlocks more efficient, transparent and collaborative ways of working throughout the entire life-cycle of buildings and infrastructure.

From a Solution Provider’s Viewpoint 

While the digital twin is needed initially for planning and construction, it’s also intended to provide the basis for building operations moving forward.

(Source: https://www.siemens.com/customer-magazine/en/home/buildings/three-perspectives-on-digital-twins.html)

The vision of “construction 4.0” refers to the 4th industrial revolution and is a fundamental challenge for the construction industry. In terms of automated production and level of digitalization, the construction industry is still significantly behind other industries. Nevertheless, the mega-trends like Big Data or the Internet of Things offer great opportunities for the future development of the construction sector. Prerequisite for the successful Construction 4.0 is the creation of a digital twin of a building. Building Information Modeling (BIM) with a consistent and structured data management is the key to generate such a digital building whose dynamic performance can be studied by building simulation tools for a variety of different boundary conditions.

Along the total life cycle from design to construction, operation and maintenance towards remodeling or demolition, the digital twin follows all modifications of the real building and dynamically readjusts itself in case of recorded performance differences.

Thus, for the whole life span of the real building, performance predictions generated with the virtual twin represent an accurate basis for well-informed decisions. This helps to develop cost-effective operation modes, e.g. by introducing new cyber-controlled HVAC systems. The digital twin may also analyze the building’s dynamic response to changes in occupation or energy supply; it also indicates the need for building maintenance or upgrades.

The digital twin follows all modifications of the real building and dynamically readjusts itself in case of recorded performance differences.

(Source: https://www.bau.fraunhofer.de/en/fieldsofresearch/smartbuilding/digital-twin.html)

Gartner-digital-twin-best-practices-to-tackle-challenges

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Digital Twins

A digital twin refers to the digital representation of a real-world entity or system. Digital twins in the context of IoT projects is particularly promising over the next three to five years and is leading the interest in digital twins today. Well-designed digital twins of assets have the potential to significantly improve enterprise decision making. These digital twins are linked to their real-world counterparts and are used to understand the state of the thing or system, respond to changes, improve operations and add value. Organizations will implement digital twins simply at first, then evolve them over time, improving their ability to collect and visualize the right data, apply the right analytics and rules, and respond effectively to business objectives.

“Over time, digital representations of virtually every aspect of our world will be connected dynamically with their real-world counterpart and with one another and infused with AI-based capabilities to enable advanced simulation, operation and analysis,” said Mr. Cearley. “City planners, digital marketers, healthcare professionals and industrial planners will all benefit from this long-term shift to the integrated digital twin world.” (Source: https://www.gartner.com)

Digital Twin 01

A digital twin is essentially a link between a real world object and its digital representation that is continuously using data from the sensors. All data comes from sensors located on a physical object; this data is used to establish the representation of a virtual object.

For construction, using digital twins means always having access to as-built and as-designed models, which are constantly synced in real-time. This allows companies to continuously monitor progress against the schedule laid out in a 4D BIM model.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


Album Format Not Dead (Adele #1 Digital Album)

The following news story shows that people will still download full albums if it is filled with great songs.

Just one week after Eminem’s Recovery became the first album to sell 1 million digital copies, Adele’s 21 has surpassed the milestone and is now the biggest-selling digital album in history. Digital sales of 21 exceed 1.017 million (out of 2.6 million total), compared with Recovery‘s 1.005 million (out of 3.9 million). Overall, almost a third (32%) of the 155.5 million albums sold in the first half of 2011 were digital, according to a midyear report released last week by Nielsen SoundScan. That’s up 19% from the same period in 2010, when 27% of 153.9 million album sales were digital.

Click here to read the rest of the story


The @FelicianoCenter’s @MIXLabDesign Design Charrette for “B.E.L.A.” Summer High School Program Entailing the Redevelopment of a Significant Urban Historic Site #UrbanPlanning #Redevelopment #Business #Entrepreneur #Education #HighSchool #DesignThink #Innovation #NJEd @MontclairStateU

On July 9, 2019, in the capacity of University Architect at Montclair State University (and Alumni of the Feliciano School of Business). I had the privilege of participating in a design charrette with a local high school. The project consists of an urban redevelopment site with a precious historical building at the site. I was invited by the people who run the Montclair State University MIX Lab (Feliciano Center for Entrepreneurship), an interdisciplinary hub for transformative innovation, and digitally mediated making.

M.I.X. stands for Making and Innovating for X, where X is the unknown, that which exceeds our grasp, the future, and the open-ended nature of creativity, good design and big problems. The co-directors of MIX Lab are Iain Kerr, associate professor of Innovation Design, and Jason Frasca, entrepreneurship instructor.

I graciously accepted Jason and Ian’s invitation to participate as a guest critic along with another fellow professional, Frank Gerard Godlewski of Fellsbridge Studio LLC, who specializes in historic preservation in the area where the redevelopment project is located.  The format for the design charrette, hosted by the MIX Lab for the high school program led by high school teacher, Kevin Richburg, included: (1) The students, in groups of 4-5, presented their concepts for the redevelopment of the site (there were 5 teams); (2) the guest critics gave suggestions and further thoughts on how to further explore and develop the student’s ideas; (3) the guest critics summed up their thoughts for all the students with key take-aways.  The following is a recap of what I learned from the students (in so far as what is the most significant to them) and the key take-aways I offered the students (in no particular order of importance) from my perspective as an Architect who has been involved in the planning, design and construction of projects over the past 20-years.

What the Student Teams Focused on as Key Ideas for their Projects:

  • Historic preservation of the existing building
  • Connecting with local community
  • Local and state pride
  • Affordability
  • Sustainability
  • Celebration of diversity and inclusion
  • Love of the arts
  • Focus on the user “experience”
  • Spaces for families to enjoy
  • Entertainment
  • Accessibility to quality food and goods
  • Mixing of “Bright and Bold” historic and modern elements
  • Transformative
  • “Modern” vibe

Proposed Amenities of the Re-Development Site:

  • Supermarkets (one group proposed a two-story whole sale supermarket)
  • Open-air markets (farmer markets, etc.)
  • Retail, restaurants, food trucks
  • Open space, a square or plaza
  • Parking for visitors (possible tunnel or bridge)
  • Parking at perimeter

Types of Buildings (Programmed Spaces)

  • Main historic building’s exterior appearance
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail
  • Main historic building’s exterior appearance
  • Explore modernization of existing historic building interior to suite new uses
  • Mixed use buildings with green roofs and roof top patios
  • Modern, light and transparent
  • Restaurants and sports bars
  • Entertainment – bowling alley, arcade, movie theater
  • Arts – Museum showcasing tradition and innovation
  • Grocery stores
  • Food trucks
  • Retail
  • Technology/electronics-based retail

Types of Exterior Spaces

  • Open spaces with green lawns and fountains
  • Places to reflect and remember
  • ·Field with stage and seating
  • Outdoor seating for restaurants
  • Areas to relax

Key Take-Aways & Ideas for Further Exploration:

  • Site plans – Delineate site elements separately from building elements (so easier to comprehend) using color or graphics (Example)
  • Floor plans – Delineate building areas/rooms with designated color so it is easier to understand program of spaces (i.e., circulation vs apartments vs retail vs support spaces, etc.) (Example)
  • Work together as a team – commemorate each other’s strengths but give everyone credit even those whose work may be behind the scenes
  • Focus on one main idea (let other ideas support the one main theme)
  • Context and Scale – Observe and learn from the surrounding community; apply those elements to the proposed project so that it complements the adjoining communities
  • Materials – Understand how the new materials can complement the historic ones (let the original historic building stand on its own and celebrate its historical significance)
  • Consider “big box” retail versus the Local “pop ups” (gentrification good and bad)
  • Parking/Transportation – As mass transportation has changed from ships to locomotives to buses and cars; look to the future as the world heads to autonomous vehicles (particularly China).  If parking is required think about how a parking lot or parking garage can be transformed in the future.  Example
  • Sustainability is important but do not forget to consider W.E.L.L. as well.  LEED/Sustainability concepts Resource 1 ; Resource 2 also check out the following link for ides about other program types for the redevelopment project Resource 3
  • Consider more technology in your projects, for instance: Smart CitiesAR/VR, and other innovate concepts, like: Immersive Experience and Virtual reality in theme park attractions. Also consider utilizing QR Codes as a teaching tool.
  • Consider developing a pedestrian mall by converting an existing street into a pedestrian friendly zone like they have done in Jersey City, NJ or Times Square, New York City, NY or Fremont Street Experience in Downtown Las Vegas, NV, the taking cars, trucks and buses off the street and giving the spaces back to the pedestrians who can enjoy it (also it would make the entire site one big site instead of two separate parcels dived by thru traffic).
  • Lastly, and not least important, when considering injecting modern elements with historic architecture, it must be considered whether the original is to remain intact or be altered.  There are interesting examples of tasteful alterations, however, the older I get the less comfortable I am with injecting new with old for the sake of “shock” value (where as a student of architecture 20 years ago the concept was more appealing).  I reminded the students of Notre Dame Cathedral in Paris, France, and the ensuing debate that is going on whether or not the renovations/upgrades should be true to the original or whether the new design should be bold and innovating and perhaps less true to the original.  Whether the designers choose to go in one direction or another much thought should be given to preserving the historical elements of our precious structures because they are irreplaceable (think Grand Central Station in New York City, NY, which acted as a catalyst for the preservation movement).  Click here to read about the history of the Preservation Battle of Grand Central Station.

Overall, I was impressed by the talent and creativity of all the students and I was pleased with the quality of their presentations. I hope I was able to contribute in some small way to the success of their respective projects.  The high school student participants’ contributions to the build environment would be welcomed by the design and construction industry, since the students are willing to understand and develop their skills in the area of deep thought, innovation, design, construction and socio-economic concepts at an early age.  I gladly encouraged each and every one of them by letting them know that if they choose a career in architecture, engineering, real-estate development, construction or related field that they would certainly all be able to achieve their goals based on their willingness and eagerness to learn and present their visions and concepts.   I hope my involvement was as rewarding for the students as it was for me.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


21 Improvements in Technology Architects Can Expect by 2030 #Innovation #Technology #ilmaBlog

  1. 90% of the population will have unlimited and free data storage.
  2. The first robotic pharmacist will arrive in the US.
  3. 1 trillion sensors will be connected to the internet.
  4. 10% of the world’s population will be wearing clothes connected to the internet.
  5. The first 3D printed car will be in production.
  6. The first implantable mobile phone will become commercially available.
  7. It is likely we will see more widespread adoption of implantable technologies emerge.
  8. The first government to replace its census with big-data technologies.
  9. 10% of reading glasses will be connected to the internet.
  10. 80% of people on earth will have a digital presence online.
  11. A government will collect taxes for the first time via blockchain. 10% of global gross domestic product will be stored using blockchain technology.
  12. 90% of the global population will have a supercomputer in their pocket.
  13. Access to the Internet will become a basic right.
  14. The first transplant of a 3D printed liver will occur.
  15. More than 50% of Internet traffic to homes will be from appliances and device.
  16. 5% of consumer products will be 3D printed.
  17. 30% of corporate audits will be performed by artificial intelligence.
  18. AI will increasingly replace a range of jobs performed by people today, including white collar jobs.
  19. Globally, more trips will be made using car sharing programs than privately owned cars. Driverless cars will account for 10% of all cars in the US.
  20. The first AI machine will join a corporate board of directors.
  21. The first city with more than 50,000 people and no traffic lights will come into existence.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Will Higher Education Look Like 5, 10 or 20 Years From Now? Some Ways Colleges Can Reinvent Themselves #iLMA #eMBA #Innovation #Technology #Planning #Design #HigherEducation #HigherEd2030 #University #Architect

Introduction

Change is a natural and expected part of running a successful organization. Whether big or small, strategic pivots need to be carefully planned and well-timed. But, how do you know when your organization is ready to evolve to its next phase? Anyone that listens, watches, or reads the news knows about the rising cost of higher education and the increasing debt that education is putting on students and alumni and their families.

At a time when education is most important to keep up with increasing technological changes, institutions need to pivot or face imminent doom in an ever increasing competitive environment. Competition can come from startups or external factors in the higher education market therefore it is increasingly necessary for institutions of higher learning to take a different approach to their business operations.

This post will focus on:

  • Current Trends
  • Demographic Shifts
  • Future of Higher Education (and impacts on University Facilities & Management)
    • Changing Assumptions
    • Implications for the Physical Campus
    • Changing Trajectory
    • More Trends in Higher Education (Towards 2030)
  • Driving Technologies
  • External Forces

Current Trends

  • Online education[i] has become an increasingly accepted option, especially when “stackable” into degrees.
  • Competency-based education lowers costs and reduces completion time for students.
  • Income Share Agreements[ii] help students reduce the risk associated with student loans.
  • Online Program Manager organizations benefit both universities and nontraditional, working-adult students.
  • Enterprise training companies are filling the skills gap by working directly with employers.
  • Pathway programs facilitate increasing transnational education[iii], which serves as an additional revenue stream for universities.

Demographic Shifts

According to data from the National Clearinghouse and the Department of Education[iv]:

  • The Average Age of a College/University Student Hovers Around Twenty-Seven (Though That Is Decreasing as The Economy Heats Up)
  • 38% of Students Who Enrolled In 2011 Transferred Credits Between Different Institutions At Least Once Within Six Years.
  • 38% of Students Are Enrolled Part-Time.
  • 64% of Students Are Working Either Full-Time or Part-Time.
  • 28% of Students Have Children of Their Own or Care For Dependent Family Members.
  • 32% of Students Are from Low-Income Families.
  • The Secondary Education Experience Has an Increasingly High Variation, Resulting In Students Whose Preparation For College-Level Work Varies Greatly.

Future of Higher Education (and impacts on University Facilities & Management)

The future of higher education depends on innovation. 

University leaders who would risk dual transformation are required to exercise full commitment to multiple, potentially conflicting visions of the future. They undoubtedly confront skepticism, resistance, and inertia, which may sway them from pursuing overdue reforms.[v]

Change is upon us.

“All universities are very much struggling to answer the question of: What does [digitization[vi]] mean, and as technology rapidly changes, how can we leverage it?” . . . . Colleges afraid of asking that question do so at their own peril.”[vii]

James Soto Antony, the director of the higher-education program at Harvard’s graduate school of education.

Changing Assumptions

Until recently the need for a physical campus was based on several assumptions:

  • Physical Class Time Was Required
  • Meaningful Exchanges Occurred Face to Face
  • The Value of an Institution Was Tied to a Specific Geography
  • Books Were on Paper
  • An Undergraduate Degree Required Eight Semesters
  • Research Required Specialized Locations
  • Interactions Among Students and Faculty Were Synchronous

Implications for the Physical Campus

  • Learning – Course by course, pedagogy is being rethought to exploit the flexibility and placelessness of digital formats while maximizing the value of class time.
  • Libraries – Libraries are finding the need to provide more usable space for students and faculty.  Whether engaged in study, research or course projects, the campus community continues to migrate back to the library.
  • Offices – While the rest of North America has moved to mobile devices and shared workspaces, academic organizations tend to be locked into the private, fixed office arrangement of an earlier era – little changed from a time without web browsers and cell phones. 
  • Digital Visible – From an institutional perspective, many of the implications of digital transformation are difficult to see, lost in a thicket of business issues presenting themselves with increasing urgency. 

Changing Trajectory

University presidents and provosts are always faced with the choice of staying the course or modifying the trajectory of their institutions.  Due to failing business models, rapidly evolving digital competition and declining public support, the stakes are rising.  All should be asking how they should think about the campus built for the 21st century.[viii]  J. Michael Haggans[ix] makes the following recommendations:

  • Build no net additional square feet
  • Upgrade the best; get rid of the rest
  • Manage space and time; rethink capacity
  • Right-size the whole
  • Take sustainable action
  • Make campus matter

More Trends in Higher Education (Towards 2030)

  • The Rise of The Mega-University[x]
  • ; Public Private Partnerships (P3’s) Procurement Procedures Will Become More Prevalent
  • More Colleges Will Adopt Test-Optional Admissions
  • Social Mobility Will Matter More in College Rankings
  • Urban Colleges Will Expand[xi] — But Carefully
  • Financial Crunches Will Force More Colleges to Merge
  • The Traditional Textbook Will Be Hard to Find; Free and Open Textbooks
  • More Unbundling and Micro-Credentials
  • Continued Focus on Accelerating Mobile Apps
  • Re-Imagining Physical Campus Space in Response to New Teaching Delivery Methods
  • Transforming the Campus into A Strategic Asset with Technology
  • Education Facilities Become Environmental Innovators
  • Ethics and Inclusion: Designing for The AI Future We Want to Live In
  • Visibility (Transparency) And Connectedness
  • Sustainability from Multiple Perspectives
  • Better Customer Experiences with The Digital Supply Chain
  • Individualized Learning Design, Personalized Adaptive Learning
  • Stackable Learning Accreditation
  • Increased Personalization: More Competency-Based Education They’ll Allow Students to Master A Skill or Competency at Their Own Pace.
  • Adaptation to Workplace Needs They’ll Adapt Coursework to Meet Employer Needs for Workforce Expertise
  • Greater Affordability and Accessibility They’ll Position Educational Programs to Support Greater Availability.
  • More Hybrid Degrees[xii]
  • More Certificates and Badges, For Example: Micro-Certificates, Offer Shorter, More Compact Programs to Provide Needed Knowledge and Skills Fast[xiii]
  • Increased Sustainable Facilities – Environmental Issues Will Become Even More Important Due to Regulations and Social Awareness; Reduced Energy Costs, Water Conservation, Less Waste
  • Health & Wellness – Physical, Spiritual and Metal Wellbeing
  • Diversity and Inclusion Will Increase
  • Rise of The Micro-Campus[xiv] And Shared Campuses[xv]
  • E-Advising to Help Students Graduate
  • Evidence-Based Pedagogy
  • The Decline of The Lone-Eagle Teaching Approach (More Collaboration)
  • Optimized Class Time (70% Online, 30% Face to Face)
  • Easier Educational Transitions
  • Fewer Large Lecture Classes
  • Increased Competency-Based and Prior-Learning Credits (Credit for Moocs or From “Real World” Experience)[xvi]
  • Data-Driven Instruction
  • Aggressive Pursuit of New Revenue
  • Online and Low-Residency Degrees at Flagships
  • Deliberate Innovation, Lifetime Education[xvii]
  • The Architecture of The Residential Campus Will Evolve to Support the Future.
  • Spaces Will Be Upgraded to Try to Keep Up with Changes That Would Build In Heavy Online Usage.
  • Spaces Will Be Transformed and Likely Resemble Large Centralized, Integrated Laboratory Type Spaces. 
  • Living-Learning Spaces in Combination Will Grow, But On Some Campuses, Perhaps Not In The Traditional Way That We Have Thought About Living-Learning To Date.

Driving Technologies:

  • Emerging Technologies – Such as Augmented Reality, Virtual Reality, And Artificial Intelligence – Will Eventually Shape What the Physical Campus Of The Future Will Look Like, But Not Replace It.[xviii]
  • Mobile Digital Transformation[xix]
  • Smart Buildings and Smart Cities[xx]
  • Internet of Things
  • Artificial Intelligence (AI), Including Natural Language Processing
  • Automation (Maintenance and Transportation Vehicles, Instructors, What Else?)
  • Virtual Experience Labs, Including: Augmented Reality, Virtual Reality Learning, And Robotic Telepresence 
  • More Technology Instruction and Curricula Will Feature Digital Tools and Media Even More Prominently
  • New Frontiers For E-Learning, For Example, Blurred Modalities (Expect Online and Traditional Face-To-Face Learning to Merge)[xxi]
  • Blending the Traditional; The Internet Will Play Bigger Role in Learning
  • Big Data: Colleges Will Hone Data Use to Improve Outcomes

External Forces:

  • [xxii]: Corporate Learning Is A Freshly Lucrative Market
  • Students and Families Will Focus More on College Return On Investment, Affordability And Student Loan Debt
  • [xxiii]
  • Greater Accountability; Schools will be more accountable to students and graduates
  • Labor Market Shifts and the Rise of Automation
  • Economic Shifts and Moves Toward Emerging Markets
  • Growing Disconnect Between Employer Demands and College Experience 
  • The Growth in Urbanization and A Shift Toward Cities 
  • Restricted Immigration Policies and Student Mobility
  • Lack of Supply but Growth in Demand
  • The Rise in Non-Traditional Students 
  • Dwindling Budgets for Institutions[xxiv]
  • Complex Thinking Required Will Seek to Be Vehicles of Societal Transformation, Preparing Students to Solve Complex Global Issues

Sources & References:


[i] Online education is a flexible instructional delivery system that encompasses any kind of learning that takes place via the Internet. The quantity of distance learning and online degrees in most disciplines is large and increasing rapidly.

[ii] An Income Share Agreement (or ISA) is a financial structure in which an individual or organization provides something of value (often a fixed amount of money) to a recipient who, in exchange, agrees to pay back a percentage of their income for a fixed number of years.

[iii] Transnational education (TNE) is education delivered in a country other than the country in which the awarding institution is based, i.e., students based in country Y studying for a degree from a university in country Z.

[iv] Article accessed on April 16, 2019: https://er.educause.edu/articles/2019/3/changing-demographics-and-digital-transformation

[v]Article accessed on April 16, 2019: https://ssir.org/articles/entry/design_thinking_for_higher_education

[vi] Digitization is the process of changing from analog to digital form.

[vii] Article accessed on April 16, 2019:  https://qz.com/1070119/the-future-of-the-university-is-in-the-air-and-in-the-cloud

[viii] Article accessed on April 16, 2019: http://c21u.gatech.edu/blog/future-campus-digital-world

[ix] Michael Haggans is a Visiting Scholar in the College of Design at the University of Minnesota and Visiting Professor in the Center for 21st Century Universities at Georgia Institute of Technology.  He is a licensed architect with a Masters of Architecture from the State University of New York at Buffalo.  He has led architectural practices serving campuses in the US and Canada, and was University Architect for the University of Missouri System and University of Arizona.

[x] Article accessed on April 16, 2019:  https://www.chronicle.com/interactives/Trend19-MegaU-Main

[xi] Article accessed on April 16, 2019:  https://www.lincolninst.edu/sites/default/files/pubfiles/1285_wiewel_final.pdf

[xii] Article accessed on April 16, 2019: https://www.fastcompany.com/3046299/this-is-the-future-of-college

[xiii] Article accessed on April 16, 2019: https://www.govtech.com/education/higher-ed/Why-Micro-Credentials-Universities.html

[xiv] Article accessed on April 16, 2019: https://global.arizona.edu/micro-campus

[xv] Article accessed on April 16, 2019: https://evolllution.com/revenue-streams/global_learning/a-new-global-model-the-micro-campus

[xvi] Article accessed on April 16, 2019:  https://www.chronicle.com/article/The-Future-Is-Now-15/140479

[xvii] Article accessed on April 16, 2019:  https://evolllution.com/revenue-streams/market_opportunities/looking-to-2040-anticipating-the-future-of-higher-education

[xviii] Article accessed on April 16, 2019: https://www.eypae.com/publication/2017/future-college-campus

[xix] Article accessed on April 16, 2019: https://edtechmagazine.com/higher/article/2019/02/digital-transformation-quest-rethink-campus-operations

[xx] Article accessed on April 16, 2019: https://ilovemyarchitect.com/?s=smart+buildings

[xxi] Article accessed on April 16, 2019: https://www.theatlantic.com/education/archive/2018/04/college-online-degree-blended-learning/557642

[xxii] Article accessed on April 16, 2019: https://qz.com/1191619/amazon-is-becoming-its-own-university

[xxiii] Article accessed on April 16, 2019: https://www.fastcompany.com/3029109/5-bold-predictions-for-the-future-of-higher-education

[xxiv] Article accessed on April 16, 2019: https://www.acenet.edu/the-presidency/columns-and-features/Pages/state-funding-a-race-to-the-bottom.aspx

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The Architect’s Role in Sustainable Design (and How to Use Technology and Innovation to Advance Building Performance) #ilmaBlog #green #design #architecture #greenbuildings

Background

In the design and construction field, there are two major categories of resources: renewable and non-renewable. As opposed to non-renewable resources, which are depleted with their constant use, renewable resources are not. If not managed properly Non-renewable resources might become non-existent when the rate at which they are used is much higher than the rate at which they are replaced. Renewable resources include water, geothermal energy and wind energy. Non-renewable resources include coal, natural gas and oil.  The demand for new construction is on the rise as the world’s population increases and the demand for newer, more efficient modern buildings also increase.

Architect’s Role

Because buildings account for so much energy to build and maintain, architects and designers have become very conscious about our role in minimizing our environmental footprint when we design buildings.  The American Institute of Architects, the largest organization of architects world-wide has a committee called the Committee on the Environment (COTE), which works to advance, disseminate, and advocate—to the profession, the building industry, the academy, and the public—design practices that integrate built and natural systems and enhance both the design quality and environmental performance of the built environment. COTE serves as the community and voice on behalf of AIA architects regarding sustainable design and building science and performance.

Bamboo

Renewable Resources

In green construction processes, there is an emphasis on the use of renewable resources. In many cases, this natural source becomes depleted much faster than it is able to replenish itself, therefore, it has become important that buildings make use of alternative water sources for heating, hot water and sewerage disposal throughout their life cycles, to reduce use and conserve water supplies.

Architects and designers specify rapidly renewable materials are those that regenerate more quickly than their level of demand. Our goal is to reduce the use and depletion of finite raw materials and long-cycle renewable materials by replacing them with rapidly renewable ones.  Some commonly specified rapidly renewable materials include cork, bamboo, cotton batt insulation, linoleum flooring, sunflower seed board panels, wheat-board cabinetry, wool carpeting, cork flooring, bio-based paints, geotextile fabrics such as coir and jute, soy-based insulation and form-release agent and straw bales. Some green building materials products are made of a merger of rapidly renewable materials and recycled content such as newsprint, cotton, soy-based materials, seed husks, etc.

Check out this ILMA article about “Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design” for more information on this topic.

Responsibility of Architects

Architects and designers who align with AIA’s COTE objectives, (1) recognize the value of their role in environmental leadership to advance the importance of sustainable design to the general public while incorporating sustainable design into their daily practice, (2) influence the direction of architectural education to place more emphasis on ecological literacy, sustainable design and building science, (3) communicate the AIA’s environmental and energy-related concerns to the public and private sectors and influence the decisions of the public, professionals, clients, and public officials on the impact of their environmental and energy-related decisions, (4) educate other architects on regulatory, performance, technical and building science issues and how those issues influence architecture, (5) educate the architectural profession on programming, designing, and managing building performance, (6) investigate and disseminate information regarding building performance best practices, criteria, measurement methods, planning tools, occupant-comfort, heat/air/moisture interfaces between the interior and exterior of buildings, (7) promote a more integrated practice in order to achieve environmentally and economically efficient buildings. One of the tools we will plan to promote to achieve this integration is Building Information Technology (BIM).

Smart-Building

The Role of Technology & Innovation – A Case Study (“The Edge”)

PLP Architecture and the Developer OVG Real Estate, built “The Edge” is a 430,556 SF (40,000m²) office building in the Zuidas business district in Amsterdam. It was designed for the global financial firm and main tenant, Deloitte. The project aimed to consolidate Deloitte’s employees from multiple buildings throughout the city into a single environment, and to create a ‘smart building’ to act as a catalyst for Deloitte’s transition into the digital age.

They key features of this building include the following innovations which address the environmental impact of building such a large edifice:

  • Each facade is uniquely detailed according to its orientation and purpose.
    • Load bearing walls to the south, east and west have smaller openings to provide thermal mass and shading, and solid openable panels for ventilation.
    • Louvers on the south facades are designed according to sun angles and provide additional shading for the office spaces, reducing solar heat gain.
    • Solar panels on the south facade provide enough sustainable electricity to power all smartphones, laptops and electric cars.
    • The North facades are highly transparent and use thicker glass to dampen noise from the motorway.
    • The Atrium façade is totally transparent, allowing views out over the dyke, and steady north light in.
  • The building’s Ethernet-powered LED lighting system is integrated with 30,000 sensors to continuously measure occupancy, movement, lighting levels, humidity and temperature, allowing it to automatically adjust energy use.
  • 65,000 SF of solar panels are located on the facades and roof, and remotely on the roofs of buildings of the University of Amsterdam – thereby making use of neighborhood level energy sourcing.
  • The atrium acts as a buffer between the workspace and the external environment. Excess ventilation air from the offices is used again to air condition the atrium space. The air is then ventilated back out through the top of the atrium where it passes through a heat exchanger to make use of any warmth.
  • Rain water is collected on the roof and used to flush toilets and irrigate the green terraces in the atrium and other garden areas surrounding the building.
  • Two thermal energy wells reach down to an aquifer, allowing thermal energy differentials to be stored deep underground.
  • In The Edge a new LED-lighting system has been co-developed with Philips. The Light over Ethernet (LoE) LED system is powered by Ethernet and 100% IP based. This makes the system (i.e. each luminaire individually) computer controllable, so that changes can be implemented quickly and easily without opening suspended ceilings. The luminaires are furthermore equipped with Philips’ ‘coded-light’ system allowing for a highly precise localization via smartphone down to 8 inches (20 cm) accuracy, much more precise than known WiFi or beacon systems.
  • Around 6,000 of these luminaires were placed in The Edge with every second luminaire being equipped with an additional multi-sensor to detect movement, light, infrared and temperature.
  • The Philips LoE LED system was used in all office spaces to reduce the energy requirement by around 50% compared to conventional TL-5 Lighting. Via the LoE system daily building use can be monitored. This data is fed to facility managers via the BMS allowing:
    • Remote insight into the presence of people in the building (anonymous). Heating, cooling, fresh air and lighting are fully IoT (Internet of Things) integrated and BMS controlled per 200 sqft based on occupancy – with zero occupancy there is next-to-zero energy use.
    • Predictions of occupancy at lunchtime based on real time historical data and traffic and weather information to avoid food-waste.
    • Unused rooms to be skipped for cleaning.
    • Managers to be alerted to lights that need replacing.
    • Notification of printers needing paper.
  • Every employee is connected to the building via an app on their smartphone. Using the app they can find parking spaces, free desks or other colleagues, report issues to the facilities team, or even navigate within the building.
  • Employees can customize the temperature and light levels anywhere they choose to work in the building via the mobile app. The app remembers how they like their coffee, and tracks their energy use so they’re aware of it.
  • The vast amount of data generated by the building’s digital systems and the mobile app on everything from energy use to working patterns, has huge potential for informing not only Deloitte’s own operations, but also our understanding of working environments as a whole. Discussions are currently ongoing regarding the future of this data and its use for research and knowledge transfer.
  • The green space that separates the building from the nearby motorway acts as an ecological corridor, allowing animals and insects cross the site safely.

Conclusion

Because buildings account for nearly 40 percent of global energy consumption, architects and designers have been working to impact the built environment in a positive way.  Although not every project can be as green as The Edge, by selecting materials that are renewable while reducing energy are two big contributions we can make to help ease the increasing demand for construction.

Technology can play a big part in our role to design more sustainable buildings through the use of building information modeling, energy management software, building management software, online sustainability calculators, energy modeling software, new lighting innovations, new techniques to capture and deliver energy and clean water while reducing waste, and mobile applications utilizing IoT.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


History of Architecture

Jacqueline Gargus is a professor of architecture at the Knowlton School. Educated at Wellesley College and the University of Pennsylvania, she joined the Knowlton School faculty in 1988. She has also taught at the Harvard Graduate School of Design and has been a Senior Research Fellow at the Bauhaus Universität, Weimar, and the Technical University of Vienna. She is the author of Ideas of Order: A Formal Approach to Architecture (Kendall Hunt, 1994) and the multimedia digital video textbook, Architectural History 1, produced by iTunes University. Her most recent book is Architecture Guide: China (2016), co-authored with Evan Chakroff and Addison Godel.

Follow this link for access to over 40 youtube videos that take you from antiquity through mid-1800’s.

History of Architecture Youtube Playlist

If you just cannot get enough (like me) click here for another 100 episodes: iTunes History of Architecture Course

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Top 20: Technology & Innovation Ideas For Architects

Thank you for all the support and encouragement over the years.  Here are some of our favorite blog posts about technology and innovation related to the field of Architecture:

  1. High Performance Building Design
  2. 3-D Printing
  3. Connected Spaces
  4. Benefits of Using Digital Twins for Construction
  5. Digital Twins
  6. Drone Technology
  7. Artificial Intelligence
  8. Immersive Experience in Architecture
  9. Smart Cities
  10. Big Data in Architecture
  11. Creating High Performance Buildings through Integrative Design Process
  12. Forget Blueprints, Now You Can Print the Building
  13. The 7 Dimensions of Building Information Modeling
  14. Parametric Architecture and Generative Design System
  15. Architecture Robots
  16. Internet of Spaces
  17. Sustainable Design Elements to Consider While Designing a Project
  18. What is a High Performance School?
  19. What is BIM? Should Your Firm Upgrade? by @FrankCunhaIII
  20. Renewable Wave Power Energy

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Customer Experience

User ExperienceThe way you design your service experiences also makes an important impact on prospects and customers. Smart companies anticipate customer needs and are a few steps ahead of what comes next in the customer awareness through buying cycle. In this digital age, service and communication become the new commodity and it’s critical to design experiences to that model. Experience-based service begins with a process of communicating with customers and letting them initiate communications in return.

Getting personal with customers also enhances the customer experience. People like to buy from companies who they feel understand them and can anticipate their needs. Simple things like email birthday greetings or product suggestions based on past purchases tell customers that you remember them, value them and appreciate their business.

Intentional design is a powerful tool that provides a systematic method to explore a variety of customer interactions and touchpoints that move, engage and respond. Most of all, customer experiences have to be authentic and all touchpoint possibilities explored before recommending appropriate user design scenarios.

(Source: http://madplumcreative.com/enhancing-the-customer-experience-through-intentional-design)

Service providers are continually reshaping their offering in response to changing customer needs and demands. As customer expectations change, businesses need to rethink the experiences they deliver. Meeting new demands does not only require delivery of the right propositions – it also requires developing broader capabilities around the needs of people, across the entire ecosystem.

Adapting to the Fast-Moving Customer World

Most organizations are not designed to meet the changes that occur in their customer’s lives. Stable organizational structures, designed around the needs of the organisation, struggle to provide the flexibility needed to meet the demands of customers. These rigid structures constantly create barriers to customer interactions. They also impact customer loyalty as well as the businesses’ ability to offer more relevant products and services.

Evolving Organizational Design Around Customer Needs

From business architecture to agile methods, organizations constantly try different approaches to move the organization forward and get closer to their customers. Yes, few organizations manage to truly connect with their customer and meet their needs. There is often a gap between what customers really need, and what the organization must be capable of doing. Bringing the customer perspective into traditional change disciplines bridges this gap and enables the organization to evolve its design around its customers.

Seeing the Organization Through Your Customer’s Eyes

The complex systems, processes and connections within many organizations make it challenging to understand how different teams and departments impact customers. Looking at your organization from the outside in, rather than from the inside out, provides insight into how customers see different departments working (together). Customers using a service are generally the ones who are exposed to the entire organization, and its vast amount of divisions, departments and groups. Seeing the organization through your customer’s eyes helps to build a true picture of the organization and its impact on the customer experience.

Design the Business Around Customers’ Experience

Shifting the focus from inside out to outside in helps build an understanding of the experiences customers demand through all their interactions with the organization. Using this knowledge, the right capabilities can be planned and delivered. Designing your business around the needs of people and shifting the organization to a customer first mind-set enables you to differentiate and grow sustainably.

Experience ArchitectCustomer Experience Architecture Translated Into Organizational Capabilities

The customer experience architecture connects all aspects of the customers’ experience with the business and the organization. It maps the fluidity of customers’ needs and expectations, highlights major opportunities to have business impact and translates these into clear organizational capabilities. Understanding capabilities from a customers’ perspective helps determine which aspect delivers the core capabilities – people, process, system – and how this should be developed.

Co-Creating Your Business With Customers

Adopting a customer experience architecture driven approach puts the focus on understanding customer journeys, channel integrations and fulfilment. Adopting this approach, as opposed to the traditional organizational capability perspective, ensures the architecture of the business grows and evolves in line with customer demands. In addition, a more flexible and cohesive structure enables the business to co-create its design – as well as its experiences with its customers.

Delivering Frictionless Experiences

A customer driven architecture provides the ability to design organizational capabilities from the customer perspective. By mapping how customers use and experience a service, it becomes clear how different departments and groups within the organization impact that experience. Collaboration of a variety of skills from different disciplines leads to a cohesive design, which delivers the experiences customers demand, across all key interactions and channels.

Connecting Customers’ to the Business Capabilities

Keeping up with the constantly evolving needs of customers has become increasingly complex. To stay ahead organisations must start designing their structures and capabilities from the outside in, ensuring the business is evolves around the needs of customers. A customer experience architecture not only designs from the outside, it also brings you closer to your customers and their needs which ultimately allows for co-creating excellent experiences.

(Source: https://www.liveworkstudio.com/articles/customer-experience-architecture)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


3-D Printing

We can attribute 3D printing technology to an American engineer and the co-founder of 3D systems, Chuck (Charles) Hull. He invented the first printing process that was capable of creating an actual, physical 3D object from a digital data file.  He called this process Stereolithography. In an interview, Hull admits how surprised he was of the capabilities and potential of his discovery. And however amazed people were of 3D printing in its infancy, few could have imagined where it was heading.

Chuck Hull Inventor

Early stage models: Concept models are quick and easy to produce. The moment you have your model you can begin discussions with clients and prospects. This saves time and money, reduces the risk of costly errors, and speeds up the entire design-to-agreement process.

Urban planning: Architects now have the ability to 3D print a model of an entire town or city. This is something that’s achievable within hours with the right equipment and print materials.

Model variations: Sometimes it’s useful to print a few variations of the same or similar models. This is an affordable way to help architects get to their final designs faster and with much less fuss.

3D-SectionModelTo summarize, here are the three key benefits of 3D printing for architects:

  1. Detailed 3D printed models help clients to better visualize final projects
  2. Reduced time (hours and days) spent creating models
  3. Over time, Architects can build a library of reusable 3D designs

(Source: http://3dinsider.com/3d-printing-architecture)

Further Reading:

http://www.lgm3d.com/professionals/students

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Connected Spaces

Connected-Life

The internet of things, or IoT, is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.

Connected spaces are networked to enable the interconnection and interoperability of multiple devices, services and apps, ranging from communications and entertainment to healthcare, security and home automation. These services and apps are delivered over multiple interlinked and integrated devices, sensors, tools and platforms. Connected, real-time, smart and contextual experiences are provided for the household inhabitants, and individuals are enabled to control and monitor the home remotely as well as within it.

Connected-HomeThe technologies behind connected spaces can be grouped in the following categories:

  • Networking: Familiar networking technologies (high bandwidth/high power consumption), such as Multimedia over Coax Alliance (MoCA), Ethernet, Wi-Fi, Bluetooth, as well as 3G and Long Term Evolution (LTE), are complemented with low-power consumption networking standards for devices and sensors that require low bandwidth and consume very little power, such as thermostats.
  • Media and Entertainment: This category, which covers integrated entertainment systems and includes accessing and sharing digital content across different devices, has proved to be the most prolific and contains some of the most mature technologies in the connected home.
  • Security, Monitoring and Automation: The technologies in this category cover a variety of services that focus on monitoring and protecting the home as well as the remote and automated control of doors, windows, blinds and locks, heating/air conditioning, lighting and home appliances, and more.
  • Energy Management: This category is tightly linked to smart cities and government initiatives, yet consumer services and devices/apps are being introduced at mass-market prices that allow people to track, control and monitor their gas/electricity consumption.
  • Healthcare, Fitness and Wellness: Solutions and services around healthcare have proven slow to take off, because they have to be positioned within a health plan and sold to hospitals and health insurance companies. The fitness and wellness segment has strong and quickly developed ecosystems that range from devices to sports wares to apps, which integrate seamlessly with each other to create a strong customer experience.

(Source: https://www.gartner.com)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Immersive Experience in Architecture

VR-HeroPotential uses for VR and AR in architectural design are not science fiction fantasy.

New VR devices allow designers and clients inside conceptual designs. We simply load a VR device with a three-dimensional rendering of a space, and let the user experience it virtually. These VR experiences are far more effective than two-dimensional renderings at expressing the look and feel of a design. VR allows our clients to make better-educated assessments of the total sensory experience and the small details of our design. VR is helping us bridge the divide between our ideas and our clients’ perception of them, letting us effectively simulate our designs before a single nail is driven, part is molded or footing is poured. Our existing modeling programs let us render views in VR devices that are single point-of-view. The user gets to look around from that point and immerse themselves in 360-degree views. Needless to say, the ability to experience spaces before they’re paid for and built increases clients’ peace of mind about their investments.
(Source: https://www.archdaily.com/872011/will-virtual-reality-transform-the-way-architects-design)

While conversational interfaces are changing how people control the digital world,
virtual, augmented and mixed reality are changing the way that people perceive and
interact with the digital world. The virtual reality (VR) and augmented reality (AR) market is currently adolescent and fragmented. Interest is high, resulting in many novelty VR applications that deliver little real business value outside of advanced entertainment, such as video games and 360-degree spherical videos. To drive real tangible business benefit, enterprises must examine specific real-life scenarios where VR and AR can be applied to make employees more productive and enhance the design, training and visualization processes. (Source: https://www.gartner.com)
VR-Architect
Mixed reality, a type of immersion that merges and extends the technical functionality of
both AR and VR, is emerging as the immersive experience of choice providing a
compelling technology that optimizes its interface to better match how people view and
interact with their world. Mixed reality exists along a spectrum and includes head-
mounted displays (HMDs) for augmented or virtual reality as well as smartphone and
tablet-based AR and use of environmental sensors. Mixed reality represents the span of
how people perceive and interact with the digital world. (Source: https://www.gartner.com)

VR has already excelled in one area of the travel industry, in what’s been termed as ‘try
before you fly’ experiences – giving prospective tourists a chance to see their potential
destinations before booking their trip. Virgin Holidays have created Virgin Holidays
Virtual Holidays using VR and have seen a rise in sales to one of their key destinations.
In terms of creating these experiences from a design perspective, technology is both a
help and a hindrance. It’s allowing designers to get to know their audiences better, but
it’s also making it easier for businesses to lose track of the users who will eventually
own or experience the product. (Source: https://www.virgin.com/entrepreneur/how-internet-things-will-change-our-spaces)
VR-Virgin

Immersive Architecture

“Visualization matters. It’s really, really critical that people understand what they’re looking at and can contribute meaningfully to the dialogue. You want experts and non-experts to be able to derive actionable insight from what they’re seeing.”

–Matthew Krissel, Partner at KieranTimberlake

More Information:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


Big Data in Architecture

Big-Data-02Big data is a term that describes the large volume of data – both structured and unstructured – that inundates a business on a day-to-day basis. But it’s not the amount of data that’s important. It’s what organizations do with the data that matters. Big data can be analyzed for insights that lead to better decisions and strategic business moves.

(Source: https://www.sas.com/en_us/insights/big-data/what-is-big-data.html)

In buildings, data might be generated by a very wide variety of sources, including:

  • Design and construction (for example building information modeling)
  • Post occupancy evaluation
  • Utilities, building services, meters, building management systems and so on
  • Infrastructure and transport systems
  • Enterprise systems such as purchasing systems, performance reporting, work
    scheduling and so on
  • Maintenance and replacement systems
  • Operational cost monitoring
  • Information and Communications Technology (ICT) systems and equipment

Data from these sources can be used to understand behavior, assess
performance, improve market competitiveness, allocate resources and so on.
Smart buildings focus on the use of these interconnected technologies to make
buildings more intelligent and responsive, ultimately improving their performance, and
might include technologies such as:

  • Automated systems
  • Intelligent building management systems
  • Energy efficiency measures
  • Wireless technologies
  • Digital infrastructures
  • Adaptive energy systems
  • Networked appliances
  • Data gathering devices
  • Information and communications networks
  • Assistive technologies
  • Remote monitoring
  • Fault diagnostics and prognostics

(Source:https://medium.com/studiotmd/designing-with-data-8fd73345afb8)

Big-Data-01{Repost} How Big Data is Transforming Architecture

The phenomenon presents huge opportunities for the built environment and the firms that design it.

Clients are demanding data from architects

Clients are starting to ask architects to deliver more than just drawing sets. They are eyeing the data-rich BIM models that firms use to document projects as a way to supply data for downstream applications, such as facilities management.

With BIM achieving some level of maturity within the industry, there is a growing expectation that architects will produce datasets, such as the COBie (Construction-Operations Building Information Exchange) spreadsheet, as part of their regular deliverables. The COBie spreadsheet is essentially a list of building assets—such as chairs and HVAC systems—that the owner can then use to manage the facility. Next year, the U.K. government will require architects working on any publicly funded project to produce COBie spreadsheets. For architects, this means that their data needs to be as rigorous as their drawings.

Clients are demanding data from buildings

Clients have also become interested in the data generated by the buildings. As previously mentioned, everything from thermostats to doors is being connected to the Internet so it can broadcast its use. At last year’s Venice Biennale, the exhibition’s director Rem Koolhaas, Hon. FAIA, predicted that “every architectural element is about to associate itself with data-driven technology.”

This data enables building owners to measure and improve their facilities’ performance quantitatively. Many are already doing this—albeit in a limited sense—with their HVAC systems. But what we are seeing from innovative building owners is the use of data to conduct a holistic assessment of their performance. The Walt Disney Co., for example, combines location tracking with sales data and other user-experience metrics to optimize the performance of its parks. As more owners come to rely on building data to improve the performance of their assets, architects need to ensure that their buildings can supply this critical data.

Data is changing the process as much as it is changes the output

The abundance of data may give rise to data warehouses and COBie spreadsheets, but the much more profound changes for architects will be procedural. For instance, using BIM to design and document a building has required a whole new set of business processes. The building might be visually similar to what would have been designed in the past, but everything behind the scenes, from contract wording to staff training, needs to be rethought.

(Source: http://www.architectmagazine.com/technology/how-big-data-is-transforming-architecture_o)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Library of the Future – For Colleges & Universities

If the classroom is the heart of higher education, the library is its soul.

Brief History of College Libraries

Typically, undergraduate libraries were not often discussed during the first part of the 20th century — It was thought that the basic library collections were able to meet the needs of all users, undergraduates, graduate students and faculty.

As a result of the rapid increase in the student population after World War II, undergraduate service became an issue for library and university administrators. With the growth of a complex research-oriented library and university system, undergraduate students were often bewildered. Huge card catalogs, closed book stacks and extensive reference materials overwhelmed new students and many did not seek assistance.

Harvard’s Lamont Library was the first large university’s effort to open an undergraduate library. Many other universities followed suit, such as Michigan, Texas and South Carolina. Some established full-scale libraries while others provided separate reading rooms aimed at undergraduates. One characteristic of these projects was that the books were housed in open stacks. Through design and layout undergraduate libraries and reading rooms tried to convey an informal and accessible air.

(Source: https://www.library.wisc.edu/college/about-college/history-of-college-library/)

Robert W Woodruff Library, Atlanta University Center

Robert W. Woodruff Library- Atlanta University Center

“Libraries need to break out…. We need to rethink our whole attitude about the relationship between students and space, furniture, and information, and redefine what a library should be.”

–Lee Van Orsdel Dean of University Libraries, Grand Valley State University

Library of the Future - Gensler-TrendsIn a digital world, libraries are “ripe for reinvention,” says Derek Jones, Principal in Perkins+Will’s Raleigh, N.C., office. Colleges are trimming the space their libraries allocate for books and storage and are forming consortiums to share resources. Digitization is facilitating just‑in‑time delivery of information and materials, although, as Jones points out, “when you have a million items and no budget, digitizing can be a formidable task.”

Library of the Future - EvolutionSteelcase WorkSpace Futures researchers and designers have developed key design principles for planning 21st century libraries. Like the classroom design principles, they’re based on primary user-centered research. The library design principles reflect the changed nature of a library in higher education today:

  • Design library spaces that support social learning
  • Support the librarian’s evolving role
  • Optimize the performance of informal spaces
  • Plan for adjacencies
  • Provide for individual comfort, concentration, and security
  • Provide spaces that improve awareness of, and access to, library resources

Library of the Future_Page_2

Library of the Future_Page_3

These top 10 highlights capture the big picture themes of organizational change that need to take place to develop a Library of the Future for institutions of higher education:

Libraries remain the gatekeepers to rich tapestries of information and knowledge. As the volume of web resources increases, libraries are charged with finding new ways to organize and disseminate research to make it easier to discover, digest, and track.

Incorporating new media and technologies in strategic planning is essential. Libraries must keep pace with evolving formats for storing and publishing data, scholarly records, and publications in order to match larger societal consumption trends favoring video, visualizations, virtual reality, and more.

In the face of financial constraints, open access is a potential solution. Open resources and publishing models can combat the rising costs of paid journal subscriptions and expand research accessibility. Although this idea is not new, current approaches and implementations have not yet achieved peak efficacy.

Libraries must balance their roles as places for both independent study and collaboration. Flexibility of physical spaces is becoming paramount for libraries to serve as campus hubs that nurture cross-disciplinary work and maker activities — without eschewing their reputations as refuges for quiet reflection.

Catering to patrons effectively requires user centric design and a focus on accessibility. Adopting universal design principles and establishing programs that continuously collect data on patron needs will make libraries the ultimate destination for learning support and productivity.

Spreading digital fluency is a core responsibility. Libraries are well-positioned to lead efforts that develop patrons’ digital citizenship, ensuring mastery of responsible and creative technology use, including online identity, communication etiquette, and rights and responsibilities.

Libraries must actively defend their fundamental values. In times of economic and political unrest, libraries will be challenged to uphold information privacy and intellectual freedom while advocating against policies that undermine public interests and net neutrality.

Advancing innovative services and operations requires a reimagining of organizational structures. Rigid hierarchies are no longer effective. To meet patrons’ needs, libraries must draw from different functional areas and expertise, adopting agile, matrix like paradigms.

Enabled by digital scholarship technologies, the research landscape is evolving. GIS data, data visualization, and big data are expanding how information is collected and shared. These tools are helping libraries preserve and mine their collections while illuminating collaborative opportunities.

Artificial intelligence and the Internet of Things are poised to amplify the utility and reach of library services. These emerging technologies can personalize the library experience for patrons, connecting them more efficiently to resources that best align with their goals.

(Sources: http://uwmltc.org/wp-content/uploads/2014/05/360_Issue60-1-small.pdf and https://www.steelcase.com/research)

Library of the Future_Page_1We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook