High Performance Building Design

Green-Building

970 Denny, a residential high-rise under construction in South Lake Union, used early energy modeling to demonstrate that efficiency from the water source heat pump system would offset increased thermal loss from expansive glazing.

The Federal EPA has implemented several strategies to enhance sustainability, including:

  • Conducting retro-commissioning and re-commissioning to improve energy performance
  • Using the most efficient heating, ventilation and air conditioning equipment and lighting
  • Assessing for compliance with ventilation and thermal comfort standards
  • Installing renewable energy systems
  • Replacing plumbing fixtures with higher efficiency models
  • Installing advanced energy and water meters
  • Reducing irrigated landscape areas
  • Retrofitting buildings and landscapes with low impact development features
  • Using integrated pest management techniques
  • Contracting green cleaning services
  • Purchasing environmentally preferable materials
  • Implementing materials reduction, reuse, recycling and composting programs

Airtight construction controls the transfer of heat and moisture into and through the building envelope. Thermal bridge-free assemblies avoid the envelope penetrations that sap buildings of energy, comfort, and durability. Continuous insulation keeps heat where it’s wanted. Excellent windows and doors limit heat loss while capturing daylight and passive solar energy. Shading elements shield the building from passive solar gains when unwanted. And a constant supply of filtered fresh air comes in through a balanced heat recovery (or energy recovery) ventilation system that recaptures the thermal energy of exhaust air and keeps it inside the building. “Envelope-first” focus design consideration dramatically reduces the energy demand to heat and cool high-performance building. In fact, Passive House buildings routinely reduce heating and cooling energy by up to 90%.

(Source: https://hammerandhand.com/field-notes/what-is-high-performance-building)

Green-Building-WorldThe research will further build on the results of the Well Living Lab’s latest study findings, published in Building and Environment. The study found that temperature, noise, and lighting in open office environments affect employees’ ability to get work done. This was a proof-of concept study that demonstrated the strength of living lab methodology in measuring realistic occupant responses to select environmental changes in an open office. Specifically, it indicated that employees are most sensitive to thermal conditions, followed by work-related noise such as conversations and lack of natural light from windows when working in open office environments. These factors affected work environment satisfaction, productivity, and even carried over into the mood of employees and their sleep.

(Source: https://facilityexecutive.com/2018/03/indoor-environments-impact-on-wellness-to-be-studied)

Further Reading:

Goining-Green-QuestionWe would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


The 7 Dimensions of Building Information Modeling

It has increasingly become crystal clear that BIM represents the opening of the architectural design community and construction industry to interoperability. There is no doubt that it’s a long and tedious way to being fully developed, however, important steps have been made during the last decades and the future of construction looks brighter day by day.

What is BIM?
3D-House

Building Information Modeling (BIM) is the process of creating information models containing both graphical and non-graphical information in a Common Data Environment (CDE) (a shared repository for digital project information). The information that is created becomes ever more detailed as a project progresses with the complete dataset then handed to a client at completion to use in the building’s In Use phase and potentially on into a decommissioning phase.

When we talk about BIM maturity we are essentially talking about the supply chain’s ability to exchange information digitally. The maturity levels from Level 0, through Levels 1, 2, 3 and beyond are often visualized via the maturity ‘wedge’ diagram conceived by Mark Bew and Mervyn Richards. Our article on BIM Levels Explained is a good place to start if you’re looking for more information.

BIM dimensions are different to BIM maturity levels. They refer to the particular way in which particular kinds of data are linked to an information model. By adding additional dimensions of data you can start to get a fuller understanding of your construction project – how it will be delivered, what it will cost and how it should be maintained etc. These dimensions – 4D, 5D and 6D BIM – can all feasibly (but not necessarily) occur within a BIM Level 2 workflow.

In this blog post we explore what it means to add different dimensions of information to a BIM process and explore what this looks like in practice and what benefits might be expected.

7D BIM

3D (The Shared Information Model)

3D BIM is perhaps the BIM we are most familiar with – the process of creating graphical and non-graphical information and sharing this information in a Common Data Environment (CDE).

As the project lifecycle progresses this information becomes ever more rich in detail until the point at which the project data is handed over to a client at completion.
4D (Construction sequencing)

4D BIM adds an extra dimension of information to a project information model in the form of scheduling data. This data is added to components which will build in detail as the project progresses. This information can be used to obtain accurate programme information and visualisations showing how your project will develop sequentially.

Time-related information for a particular element might include information on lead time, how long it takes to install/construct, the time needed to become operational/harden/cure, the sequence in which components should be installed, and dependencies on other areas of the project.

With time information federated in the shared information model planners should be able to develop an accurate project programme. With the data linked to the graphical representation of components/systems it becomes easy to understand and query project information and it is also possible to show how construction will develop, sequentially, over time showing how a structure will visually appear at each stage.

Working in this way is enormously helpful when it comes to planning work to ensure it is safely, logically and efficiently sequenced. Being able to prototype how assets come together before ground is broken on site allows for feedback at an early stage and avoids wasteful and costly on-site design co-ordination and rework. Showing how projects will be constructed visually is also handy when engaging with stakeholders, giving everyone a clear visual understanding of planned works and what the finished construction will look like with no surprises.

Adding sequencing information can be extremely useful, not just in the design phase, but earlier too, allowing for the feasibility of schemes to be assessed from the off. At tender stage this kind of information can allow initial concepts to be explored and communicated to inspire confidence in the team’s ability to meet the brief.

It’s important to note that working with 4D information doesn’t negate the need for planners who remain an integral part of the project team. Rather than creating programs as proposals develop, as is the case in traditional workflows, in a digital workflow planners can now influence and shape proposals from a much earlier stage in a project. Indeed, by being closer to the wider project team and providing feedback earlier in the process, there is the potential for planners to add significantly more value to a construction project.

3D-Guggenheim-Model5D (Cost)

Drawing on the components of the information model being able to extract accurate cost information is what’s at the heart of 5D BIM.

Considerations might include capital costs (the costs of purchasing and installing a component), its associated running costs and the cost of renewal/replacement down the line. These calculations can be made on the basis of the data and associated information linked to particular components within the graphical model. This information allows cost managers to easily extrapolate the quantities of a given component on a project, applying rates to those quantities, thereby reaching an overall cost for the development.

The benefits of a costing approach linked to a model include the ability to easily see costs in 3D form, get notifications when changes are made, and the automatic counting of components/systems attached to a project. However, it’s not just cost managers who stand to benefit from considering cost as part of your BIM process. Assuming the presence of 4D program data and a clear understanding of the value of a contract, you can easily track predicted and actual spend over the course of a project. This allows for regular cost reporting and budgeting to ensure efficiencies are realized and the project itself stays within budget tolerances.

The accuracy of any cost calculations is, of course, reliant on the data produced by multiple teams and shared within the Common Data Environment. If that information is inaccurate, so too will be any calculations that rely upon it. In this respect using BIM to consider cost is no different to more traditional ways of working. It is for this reason that quantity surveyors and estimators still have an important role to play, not only in checking the accuracy of information but also in helping to interpret and fill information ‘gaps’. Many elements of a project will still be modelled in 2D or not at all. There’s also likely to be differences between models in how things are classified and the cost manager will need to clarify and understand the commonality between what at first feel like disparate things.

An information model is likely to contain three types of quantity. Quantities based on actual model components (with visible details) which you can explore through the model are the most obvious. Quantities may also be derived from model components (such as moldings around windows) that aren’t always visible. The third kind of quantity is non-modeled quantities (these include temporary works, construction joints etc.). Unless the construction phase is modeled then the design model will show, graphically, design quantities but not the construction quantities. A cost manager is likely to be skilled in picking up the quantities that aren’t solely based on model components.

One of the advantages of extrapolating cost from the information model is the fact that the data can be queried at any time during a project and the information that feeds cost reports is regularly updated. This ‘living’ cost plan helps teams design to budget and because cost managers are engaged from the start of a project this allows for faster, more accurate reporting of costs at the early stages of a project. Compare this to a traditional approach where a cost manager’s report may be updated a few times during the early stages of a project with completed designs only fully costed at the end of the project team’s design process.

The cost manager may have to get used to working earlier and more iteratively than in a traditional process but has just as important a role to play in overall project delivery.

3d-perspective-section-cardigan-street6D BIM (Project Lifecycle Information; Sustainability)

The construction industry has traditionally been focussed on the upfront capital costs of construction. Shifting this focus to better understand the whole-life cost of assets, where most money is proportionately spent, should make for better decisions upfront in terms of both cost and sustainability. This is where 6D BIM comes in.

Sometimes referred to as integrated BIM or iBIM, 6D BIM involves the inclusion of information to support facilities management and operation to drive better business outcomes. This data might include information on the manufacturer of a component, its installation date, required maintenance and details of how the item should be configured and operated for optimal performance, energy performance, along with lifespan and decommissioning data.

Adding this kind of detail to your information model allows decisions to be made during the design process – a boiler with a lifespan of 5 years could be substituted with one expected to last 10, for example, if it makes economic or operational sense to do so. In effect, designers can explore a whole range of permutations across the lifecycle of a built assets and quickly get an understanding of impacts including costs. However, it is at handover, that this kind of information really adds value as it is passed on to the end-user.

A model offers an easily-accessible and understood way of extrapolating information. Details that would have been hidden in paper files are now easily interrogated graphically. Where this approach really comes into its own is in allowing facilities managers to pre-plan maintenance activities potentially years in advance and develop spending profiles over the lifetime of a built asset, working out when repairs become uneconomical or existing systems inefficient. This planned and pro-active approach offers significant benefits over a more reactive one – not least in terms of costs.

Ideally the information model should continue to develop during the In Use phase with updates on repairs and replacements added in. Better yet, a myriad of operational data and diagnostics can also be fed in to inform decision making still further.

3D-Sydney-Opera-House7D (Operations and Facilities Management)

Studies indicate that over 90% of total building lifecycle costs are related to facility maintenance and operations. Real estate and facility managers are increasingly showing interest in using BIM in facility management.

Some of the highlights of effectiveness of utilizing BIM 7D include:

  • Preventative Maintenance Scheduling: BIM can be used to plan and track maintenance activities proactively and appropriately by using the information about the building structure and equipment used in the facility. This type of preventative maintenance activities will help improve building performance, reduce corrective maintenance and emergency maintenance repairs and increase productivity of maintenance staff.
  • Sustainability Analysis: BIM integrated with other analysis & evaluation tools are used to track building performance data, which can be compared with specified sustainable standards to identify the flaws in the building systems. Facility’s sustainability program can be improved to better match the sustainability goals.
  • Asset Management: Assets of a building consist of the physical building, its systems, equipment and surrounding environment. Asset management is essential in short-term and long-term planning for proper upkeep of building assets. The bi-directional Building Information Modeling (BIM) integration into asset management software can help in better visualization of assets and aid in the maintenance and operation of a facility.
  • Space Utilization Management: Facility professionals and department liaisons can utilize BIM to effectively manage, track and distribute appropriate spaces and related resources within a facility. BIM space management application turns out to be beneficial in planning renovation projects and future needs, allocating space for proper usage of each corner of the building and tracking the impact of proposed changes.
  • Disaster & Emergency Planning: BIM can provide critical building information to improve the efficiency of disaster response plans and minimize any risk. BIM can be integrated with building automation system (BAS) to display where the emergency is located within a building, to find possible routes to the affected area and to locate other dangerous areas within the building during such emergencies.

Sources & References:
https://www.autodesk.com/solutions/bim
https://geniebelt.com/blog/bim-maturity-levels

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


Creating High Performance Buildings through Integrative Design Process

The “High Performance by Integrative Design” film by RMI includes examples of how design teams collaborate in new ways to integrate high-performance design elements, such as daylighting, energy efficiency and renewable energy, for optimal performance. Viewers experience charrette discussions and see the design process unfold on projects such as the Empire State Building retrofit, Missouri Department of Natural Resources, Phipps Conservancy in Pittsburgh, the Desert Living Center in Las Vegas, Willow School in New Jersey and Chicago Botanic Gardens.

Typical Design & Construction Process

Conventional planning, design, building, and operations processes often fail to recognize that buildings are part of larger, complex systems. As a result, solving for one problem may create other problems elsewhere in the system.1

Integrative Design & Construction Process

Collaboration leads to innovation

An integrated design process (IDP) involves a holistic approach to high performance building design and construction. It relies upon every member of the project team sharing a vision of sustainability, and working collaboratively to implement sustainability goals. This process enables the team to optimize systems, reduce operating and maintenance costs and minimize the need for incremental capital. IDP has been shown to produce more significant results than investing in capital equipment upgrades at later stages.2


As discussed in a previous post, the integrated process requires more time and collaboration during the early conceptual and design phases than conventional practices. Time must be spent building the team, setting goals, and doing analysis before any decisions are made or implemented. This upfront investment of time, however, reduces the time it takes to produce construction documents. Because the goals have been thoroughly explored and woven throughout the process, projects can be executed more thoughtfully, take advantage of building system synergies, and better meet the needs of their occupants or communities, and ultimately save money, too.3


Considerations and Advantages of an Integrative Design Process:

  • ID&CP processes and strategies can be implemented to varying degrees depending upon the complexity of a project and an owner’s project goals.
  • A project team must be carefully assembled very early on in the process to ensure success.
  • All key participants must subscribe to the collaborative effort of establishment clear goals.
  • All project stakeholders must be involved and remain involved in the project, and must communicate openly and frequently.
  • Key participants must employ appropriate technology to foster collaborative design and construction.

Similar to the Construction Management at Risk approach to project delivery, the owner can benefit from the following IPD advantages:

  • Owner receives early cost estimating input, sometimes as early as conceptual design.
  • The owner can take advantage of special services such as:
    • Feasibility studies
    • Value engineering
    • Life cycle costs
    • Identification of long-lead items and their pre-purchase
  • Significant time can be saved because the design effort is emphasized and completed earlier in the process, and because construction can begin before the design is fully complete.
  • Architectural and engineering fees can be reduced by the early involvement of the specialty contractors.
  • Construction costs are minimized by incorporating constructability reviews into the process, and by the designers incorporating materials, methods, and systems that the team knows are more cost effective.
  • Operating costs can be reduced by providing opportunities to greatly affect long-term energy and resource use through design.
  • Capital costs can be reduced, thanks to clearer and better coordinated construction documents, which should minimize the incidence of change orders that impact both cost and time.
  • Misunderstanding between the parties is minimized when the IPD Team works together during the planning stages of the project.
  • The owner’s risk is minimized as the IPD Team approach tends to focus on early identification of potential conflicts and issues through the utilization of modeling tools. This early identification results in timely problem solving and resolution of issues through the use of models, as opposed to problem solving in the field and constructed environments.


We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

Gift Ideas from ILMA


10 STEPS TO GETTING THINGS DONE: WHAT MY KIDS TAUGHT ME ABOUT LEADERSHIP AND TEAM BUILDING

I often compare working with adults to working with children. Here is a list of suggestions to getting something done, whether it is other colleagues at work or your kids at home.

Please share your comments and feedback below this post.

1. SHARE THE VISION
It’s never easy getting someone else to just “buy in” and do something — at least not unless there is some big reward at the end. So share your vision and get “buy in” from your team. If it is possible, allow the team to shape the vision of the project, task, or event.

20130419-113743.jpg
2. MOTIVATION
Find out what motivates your team. My wife and I have been procrastinating about swapping out the kids play room with my office. By engaging my team (my kids) while my wife was out, I was able to have them help us jump start the small but arduous task ahead of us (since the two rooms are separated by two flights of stairs).

3. BREAKING DOWN A BIG TASK INTO SMALLER TASKS
Looking at all that needs to be completed is daunting, but when you break down the overall tasks into smaller, manageable tasks it appears doable. As things get done it is easy to keep the momentum going to complete the project and move on to the next one. Do not overwhelm the team — break down the activities into manageable tasks. Be realistic with the schedule to keep them motivated and on track.

4. FEEDBACK
Asking for and receiving continuous feedback helps the team see that their ideas matter. Integrating the team’s ideas into your overall project makes them feel vested in the project. It is easier to get things done when your entire team is on board with where things are headed. In my case, I asked my kids where they wanted to relocate some of the toy “stations” so they could be involved in the decision making process.

5. TAKE A BREAK
OK, playing “Rock, Paper, Scissors” and “Mickey Mouse Built a House, How Many Bricks Did He Use?” (throwbacks from when I was a kid), might not go over well at work. However, taking a break from a task will help recharge and refocus the team. Take this opportunity to encourage and bond with the team. Remind them of the vision.

20130419-113903.jpg
6. TEAM BUILDING
Use the break to bond. Whether or not this project is as successful as you envisioned it to be it is a learning opportunity (try to “break the eggs” and learn on the smaller or less important tasks, if you have to). Having a solid team will help with the success of future projects. We can grow from our challenges and experience and learn to work with our strengths (and the strengths of our team).

7. ENCOURAGEMENT
Keep giving the team positive reinforcement (and yourself too). Telling the kids that mommy was going to be “so happy” when she saw what we had undertaken, kept the little troops motivated walking up and down those stairs carrying office supplies and toys on those countless trips up and down stairs.

8. OFFER REWARD
Ice cream after dinner worked in my case. Again, see what motivates the team and offer a reward. It doesn’t necessarily need to be money or a promotion. Something small like a gas card or tickets to the movie or ball game would be a nice token of appreciation for having your tea, finish the job. It makes them feel appreciated and keeps them focused on completing the tasks expeditiously.

9. NEXT PROJECT
Go back to the team and see what ideas they have for the next project. Also remember to ask what the best and worse parts of the project were so that the next project is even more successful. Make a list of “Lessons Learned” so you don’t forget!

20130419-113947.jpg
10. MANAGEMENT & PASSING THE TORCH
If you can, avoid being a micro-manager; Next time be part of the team instead of being the leader. Let the others take the role of the committee chair, project managers, etc. What better way to teach leadership then to give someone else a turn to manage a project, task, or event? You can mentor each other (if you are willing to be reversed-mentored). They get a seasoned team member with a wealth of knowledge and experience. It’s a win-win for both and a fantastic way to build a strong, versatile team. It’s also humbling and a great way to see the project from the eyes of the guys in the trenches, which in turn, will make you a better leader for the next big thing.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Have a great weekend!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.


The Architect’s Role in Sustainable Design (and How to Use Technology & Innovation to Advance Our Green Agenda) #ilmaBlog #green #design #architecture

Background

In the design and construction field, there are two major categories of resources: renewable and non-renewable. As opposed to non-renewable resources, which are depleted with their constant use, renewable resources are not. If not managed properly Non-renewable resources might become non-existent when the rate at which they are used is much higher than the rate at which they are replaced. Renewable resources include water, geothermal energy and wind energy. Non-renewable resources include coal, natural gas and oil.  The demand for new construction is on the rise as the world’s population increases and the demand for newer, more efficient modern buildings also increase.

Architect’s Role

Because buildings account for so much energy to build and maintain, architects and designers have become very conscious about our role in minimizing our environmental footprint when we design buildings.  The American Institute of Architects, the largest organization of architects world-wide has a committee called the Committee on the Environment (COTE), which works to advance, disseminate, and advocate—to the profession, the building industry, the academy, and the public—design practices that integrate built and natural systems and enhance both the design quality and environmental performance of the built environment. COTE serves as the community and voice on behalf of AIA architects regarding sustainable design and building science and performance.

Bamboo

Renewable Resources

In green construction processes, there is an emphasis on the use of renewable resources. In many cases, this natural source becomes depleted much faster than it is able to replenish itself, therefore, it has become important that buildings make use of alternative water sources for heating, hot water and sewerage disposal throughout their life cycles, to reduce use and conserve water supplies.

Architects and designers specify rapidly renewable materials are those that regenerate more quickly than their level of demand. Our goal is to reduce the use and depletion of finite raw materials and long-cycle renewable materials by replacing them with rapidly renewable ones.  Some commonly specified rapidly renewable materials include cork, bamboo, cotton batt insulation, linoleum flooring, sunflower seed board panels, wheat-board cabinetry, wool carpeting, cork flooring, bio-based paints, geotextile fabrics such as coir and jute, soy-based insulation and form-release agent and straw bales. Some green building materials products are made of a merger of rapidly renewable materials and recycled content such as newsprint, cotton, soy-based materials, seed husks, etc.

Check out this ILMA article about “Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design” for more information on this topic.

Responsibility of Architects

Architects and designers who align with AIA’s COTE objectives, (1) recognize the value of their role in environmental leadership to advance the importance of sustainable design to the general public while incorporating sustainable design into their daily practice, (2) influence the direction of architectural education to place more emphasis on ecological literacy, sustainable design and building science, (3) communicate the AIA’s environmental and energy-related concerns to the public and private sectors and influence the decisions of the public, professionals, clients, and public officials on the impact of their environmental and energy-related decisions, (4) educate other architects on regulatory, performance, technical and building science issues and how those issues influence architecture, (5) educate the architectural profession on programming, designing, and managing building performance, (6) investigate and disseminate information regarding building performance best practices, criteria, measurement methods, planning tools, occupant-comfort, heat/air/moisture interfaces between the interior and exterior of buildings, (7) promote a more integrated practice in order to achieve environmentally and economically efficient buildings. One of the tools we will plan to promote to achieve this integration is Building Information Technology (BIM).

Smart-Building

The Role of Technology & Innovation – A Case Study (“The Edge”)

PLP Architecture and the Developer OVG Real Estate, built “The Edge” is a 430,556 SF (40,000m²) office building in the Zuidas business district in Amsterdam. It was designed for the global financial firm and main tenant, Deloitte. The project aimed to consolidate Deloitte’s employees from multiple buildings throughout the city into a single environment, and to create a ‘smart building’ to act as a catalyst for Deloitte’s transition into the digital age.

They key features of this building include the following innovations which address the environmental impact of building such a large edifice:

  • Each facade is uniquely detailed according to its orientation and purpose.
    • Load bearing walls to the south, east and west have smaller openings to provide thermal mass and shading, and solid openable panels for ventilation.
    • Louvers on the south facades are designed according to sun angles and provide additional shading for the office spaces, reducing solar heat gain.
    • Solar panels on the south facade provide enough sustainable electricity to power all smartphones, laptops and electric cars.
    • The North facades are highly transparent and use thicker glass to dampen noise from the motorway.
    • The Atrium façade is totally transparent, allowing views out over the dyke, and steady north light in.
  • The building’s Ethernet-powered LED lighting system is integrated with 30,000 sensors to continuously measure occupancy, movement, lighting levels, humidity and temperature, allowing it to automatically adjust energy use.
  • 65,000 SF of solar panels are located on the facades and roof, and remotely on the roofs of buildings of the University of Amsterdam – thereby making use of neighborhood level energy sourcing.
  • The atrium acts as a buffer between the workspace and the external environment. Excess ventilation air from the offices is used again to air condition the atrium space. The air is then ventilated back out through the top of the atrium where it passes through a heat exchanger to make use of any warmth.
  • Rain water is collected on the roof and used to flush toilets and irrigate the green terraces in the atrium and other garden areas surrounding the building.
  • Two thermal energy wells reach down to an aquifer, allowing thermal energy differentials to be stored deep underground.
  • In The Edge a new LED-lighting system has been co-developed with Philips. The Light over Ethernet (LoE) LED system is powered by Ethernet and 100% IP based. This makes the system (i.e. each luminaire individually) computer controllable, so that changes can be implemented quickly and easily without opening suspended ceilings. The luminaires are furthermore equipped with Philips’ ‘coded-light’ system allowing for a highly precise localization via smartphone down to 8 inches (20 cm) accuracy, much more precise than known WiFi or beacon systems.
  • Around 6,000 of these luminaires were placed in The Edge with every second luminaire being equipped with an additional multi-sensor to detect movement, light, infrared and temperature.
  • The Philips LoE LED system was used in all office spaces to reduce the energy requirement by around 50% compared to conventional TL-5 Lighting. Via the LoE system daily building use can be monitored. This data is fed to facility managers via the BMS allowing:
    • Remote insight into the presence of people in the building (anonymous). Heating, cooling, fresh air and lighting are fully IoT (Internet of Things) integrated and BMS controlled per 200 sqft based on occupancy – with zero occupancy there is next-to-zero energy use.
    • Predictions of occupancy at lunchtime based on real time historical data and traffic and weather information to avoid food-waste.
    • Unused rooms to be skipped for cleaning.
    • Managers to be alerted to lights that need replacing.
    • Notification of printers needing paper.
  • Every employee is connected to the building via an app on their smartphone. Using the app they can find parking spaces, free desks or other colleagues, report issues to the facilities team, or even navigate within the building.
  • Employees can customize the temperature and light levels anywhere they choose to work in the building via the mobile app. The app remembers how they like their coffee, and tracks their energy use so they’re aware of it.
  • The vast amount of data generated by the building’s digital systems and the mobile app on everything from energy use to working patterns, has huge potential for informing not only Deloitte’s own operations, but also our understanding of working environments as a whole. Discussions are currently ongoing regarding the future of this data and its use for research and knowledge transfer.
  • The green space that separates the building from the nearby motorway acts as an ecological corridor, allowing animals and insects cross the site safely.

Conclusion

Because buildings account for nearly 40 percent of global energy consumption, architects and designers have been working to impact the built environment in a positive way.  Although not every project can be as green as The Edge, by selecting materials that are renewable while reducing energy are two big contributions we can make to help ease the increasing demand for construction.

Technology can play a big part in our role to design more sustainable buildings through the use of building information modeling, energy management software, building management software, online sustainability calculators, energy modeling software, new lighting innovations, new techniques to capture and deliver energy and clean water while reducing waste, and mobile applications utilizing IoT.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook

 


Big Data in Architecture

Big-Data-02Big data is a term that describes the large volume of data – both structured and unstructured – that inundates a business on a day-to-day basis. But it’s not the amount of data that’s important. It’s what organizations do with the data that matters. Big data can be analyzed for insights that lead to better decisions and strategic business moves.

(Source: https://www.sas.com/en_us/insights/big-data/what-is-big-data.html)

In buildings, data might be generated by a very wide variety of sources, including:

  • Design and construction (for example building information modeling)
  • Post occupancy evaluation
  • Utilities, building services, meters, building management systems and so on
  • Infrastructure and transport systems
  • Enterprise systems such as purchasing systems, performance reporting, work
    scheduling and so on
  • Maintenance and replacement systems
  • Operational cost monitoring
  • Information and Communications Technology (ICT) systems and equipment

Data from these sources can be used to understand behavior, assess
performance, improve market competitiveness, allocate resources and so on.
Smart buildings focus on the use of these interconnected technologies to make
buildings more intelligent and responsive, ultimately improving their performance, and
might include technologies such as:

  • Automated systems
  • Intelligent building management systems
  • Energy efficiency measures
  • Wireless technologies
  • Digital infrastructures
  • Adaptive energy systems
  • Networked appliances
  • Data gathering devices
  • Information and communications networks
  • Assistive technologies
  • Remote monitoring
  • Fault diagnostics and prognostics

(Source:https://medium.com/studiotmd/designing-with-data-8fd73345afb8)

Big-Data-01{Repost} How Big Data is Transforming Architecture

The phenomenon presents huge opportunities for the built environment and the firms that design it.

Clients are demanding data from architects

Clients are starting to ask architects to deliver more than just drawing sets. They are eyeing the data-rich BIM models that firms use to document projects as a way to supply data for downstream applications, such as facilities management.

With BIM achieving some level of maturity within the industry, there is a growing expectation that architects will produce datasets, such as the COBie (Construction-Operations Building Information Exchange) spreadsheet, as part of their regular deliverables. The COBie spreadsheet is essentially a list of building assets—such as chairs and HVAC systems—that the owner can then use to manage the facility. Next year, the U.K. government will require architects working on any publicly funded project to produce COBie spreadsheets. For architects, this means that their data needs to be as rigorous as their drawings.

Clients are demanding data from buildings

Clients have also become interested in the data generated by the buildings. As previously mentioned, everything from thermostats to doors is being connected to the Internet so it can broadcast its use. At last year’s Venice Biennale, the exhibition’s director Rem Koolhaas, Hon. FAIA, predicted that “every architectural element is about to associate itself with data-driven technology.”

This data enables building owners to measure and improve their facilities’ performance quantitatively. Many are already doing this—albeit in a limited sense—with their HVAC systems. But what we are seeing from innovative building owners is the use of data to conduct a holistic assessment of their performance. The Walt Disney Co., for example, combines location tracking with sales data and other user-experience metrics to optimize the performance of its parks. As more owners come to rely on building data to improve the performance of their assets, architects need to ensure that their buildings can supply this critical data.

Data is changing the process as much as it is changes the output

The abundance of data may give rise to data warehouses and COBie spreadsheets, but the much more profound changes for architects will be procedural. For instance, using BIM to design and document a building has required a whole new set of business processes. The building might be visually similar to what would have been designed in the past, but everything behind the scenes, from contract wording to staff training, needs to be rethought.

(Source: http://www.architectmagazine.com/technology/how-big-data-is-transforming-architecture_o)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Glossary of Green Terminologies

The following is a quick reference guide to get you started understanding the jargon associated with green design and construction. We hope you find it useful.

1,000 ppm

One thousandth parts per million is the minimum disclosure threshold. Manufacturer measures and discloses all intentionally added ingredients and residuals that exist in the product at 1000 ppm (0.1%) or greater. These may  trigger a GreenScreen Benchmark (BM-1 or LT-1) or Possible Benchmark 1 (BM-P1 or LT-P1).

10,000 ppm (As per MSDS)

Manufacturer discloses all intentionally added ingredients and residuals that exist in a product. This is the threshold that is required by current MSDS standards

100 ppm

One hundred parts per million is the ideal disclosure threshold. Manufacturer measures and discloses all intentionally added ingredients and residuals that exist in the product at 100 ppm (0.01%) or greater. These may trigger a GreenScreen Benchmark (BM-1 or LT-1) or Possible Benchmark 1 (BM-P1 or LT-P1).

Accessory Materials

Used for the installation, maintenance , cleaning and operations materials; including materials recommended by warranty. For example, if a carpet requires a specific type of adhesive. The adhesive would be the accessory materials.

Assessment

the evaluation of the toxicological properties (hazards) of chemicals; evaluates exposure and risk assessment in relation to both environmental and human health scenarios.

Associated Hazard

disclosure of the health hazards associated with each ingredient; Portico uses a minimum set of authoritative chemical hazard lists against which ingredients are screened for human health and environmental hazards.

Asthmagen

Asthmagens are substances that are known to cause or exacerbate asthma. Asthma is a complex disease, and there is not enough evidence to point to any single cause. Public health agencies often report dust, pet dander, environmental air pollution, tobacco smoke, respiratory infections, mold, exercise, and stress as common triggers of asthma attacks.

Health organizations have also identified a number chemical asthmagens, including many that are commonly used in building materials, such as floorings, insulations and cabinet substrates. These chemicals include: formaldehyde, toluene, styrene, BPA and certain phthalate plasticizers.

Despite better management of asthma through medication, improved outdoor air quality and a dramatic decline in tobacco smoking, the incidence of asthma has continued to rise, especially in children — and in particular among children who are living in poverty.

Authoritative chemical hazard lists

a list of chemicals and their association to human health or environmental hazards. These lists are created by an expert assessment of scientific evidence by a recognized authoritative body.

Biobased

“Biobased” is a term used in the marketing materials of many types of products. While biobased technically describes a product made from a living material (soybean oil, wool, etc.) marketing materials may stretch this definition to include minerals or other naturally occurring materials that aren’t renewable, or suggest that an entire product is made of biobased materials, when in fact only a small percentage of the product is.

Blowing Agent

A class of chemicals that can generate foam in materials, such as those used in insulation, which later harden or solidify into long-lasting structures. Many are known to possess extremely high global warming potential; chlorofluorocarbons (CFCs) have been mostly eliminated from new production since the 2000s, but hydrofluorocarbons (HFCs) are still prevalent. Blowing agents, as a class of products used in building product manufacture, are in an active transition toward healthier and more environmentally friendly options.

CAS Number

chemical abstract service number is a unique numerical identifier for every chemical described in open scientific literature of elements, chemical compounds, polymers and other substances.

Carcinogen/Cancer

Can cause or contribute to the development of cancer.

Characterization

identification and disclosure of ingredients and all hazards associated with ingredient components in the product/material formulation.

Common Product Profile

A profile of a generic, non-manufacturer-specific product type that contains: a brief description of the product type, the expected composition of the product based on publicly available sources, and corresponding health hazards inherent to this composition. Common Product Profiles (CPs) developed as part of the Quartz Project include additional information about the life cycle of the product, such as its contribution to global warming. See http://www.quartzproject.org/ for more information on CPs.

Developmental Toxicant

Can cause harm to a developing child, including birth defects, low birth weight, and biological or behavioral problems that appear as the child grows.

Disclosure Threshold

the level at which all intentionally added ingredients and residuals in the product/material formulation are disclosed (1,000 ppm, 100 ppm, or other). Different standards require specific disclosure threshold. MSDS (Materials Safety Data Sheets require minimum of 10,000ppm.

Endocrine/Hormone Disruptor

Can interfere with hormone communication between cells which controls metabolism, development, growth, reproduction, and behavior (the endocrine system). Linked to health effects such as obesity, diabetes, male reproductive disorders, and altered brain development.

Environmental Attributes

this information can be found in an EPD, LCA, or other studies of global warming impact, carbon content, and embodied energy. We recommend providing this information (when available) because it will be helpful for LEED and LBC regional credit documentation and carbon accounting.

Flame Retardants

Flame retardants are chemical additives to building products that reduce their flammability. They are commonly found in textiles, plastics, coatings, finishes and foams. Halogenated flame retardants – those made with chlorine or bromine – are particularly toxic to human health, and the planet.

Flue-Gas Desulfurization (FGD)

Flue-gas desulfurization is an environmental control technology installed in the smokestacks of coal-fired power plants designed to remove pollutants from the air. These controls are also called “scrubbers”. Once the scrubbers are full of sulfur dioxide, they are often used to create synthetic gypsum. FGD gypsum can be used in drywall, but also in concrete and other applications where mined gypsum can be used. FGD can contain heavy metals such as mercury that can be released into the air when it is incorporated into these products.

Formaldehyde

Formaldehyde is a colorless gas used as a preservative and disinfectant in the building industry, and in the manufacture of polymers. Formaldehyde is carcinogenic, irritates the eyes, nose, and lungs, and is known to react with other atmospheric chemicals to produce the deadly gas carbon monoxide. Formaldehyde is used in some paints and adhesives, in some fabric treatments, and, significantly, in the manufacture of polymeric binding resins used in a wide variety of building products. Phenol formaldehyde, urea formaldehyde, and melamine formaldehyde are all known to release formaldehyde over time long after product installation in residential and commercial spaces.

Global Warming

Can absorb thermal radiation, increasing the temperature of the atmosphere and contributing to climate change.

Global Warming Potential (GWP)

Known as “greenhouse gasses,” certain gasses have the ability to warm the earth by absorbing heat from the sun and trapping it the atmosphere. Global Warming Potential is a tool that allows scientists to compare the severity of greenhouse gasses based on how much heat they can trap, and how long they remain in the atmosphere. By using carbon dioxide for each comparison, a larger GWP number, the more a gas warms the earth, and contributes to climate change.

Look for GWP data on Environmental Product Declarations, and learn more about interpreting these numbers at http://www.epa.gov/ghgemissions/understanding-global-warming-potentials.

GreenScreen

short for “GreenScreen for Safer Chemicals”, a chemical disclosure and assessment standard  developed by Clean Production Action to rank chemicals along a four point scale between the most toxic chemicals and the most benign to guide substitution efforts.

HPD

also known as Health Product Declaration. It is a standardized format that allows manufacturers to share contents of their products, including any hazardous chemicals.

HPD-1

status marked for products that have a Health Product Declaration with full ingredient and hazard listings and a hazard translator with a disclosure threshold of 1000 or 100 ppm; can contain LT-1 scored components

HPD-2

status marked for products that have a Health Product Declaration with full ingredient and hazard listings and a hazard translator with a disclosure threshold of 1000 or 100 ppm; can NOT contain LT-1 scored components

HPD-Partial

status marked for products that have a Partial Health Product Declaration and have characterization of hazards and hazard translator for ingredients; exceptions are acceptable with a disclosure threshold of 1000 ppm

Hazard

Hazard is an intrinsic property of a substance – its potential to harm humans or some part of the environment based on its physical structure and properties. We can assess the hazard of a chemical or material by reviewing the scientific evidence for the specific kinds of harm that a substance can cause (often called the endpoints), such as damage to the human reproductive system, or the onset of asthma. On HomeFree, hazards are displayed with a color indicating the level of concern for each one. Purple is the highest level of concern, followed by red, and then orange.

Because very few products on the market are made with ingredients that have no hazards, you should expect to see hazards called out, even for products that are considered healthier options. The trick is to compare hazards between products, and whenever possible, prefer the product with fewer hazards.

Health Endpoint

A disease symptom or related marker of a health impact on a human or other organism. Examples of human health endpoints include carcinogenicity (causes cancer), reproductive and developmental toxicity, respiratory sensitization, etc. Health endpoints are due to the inherent hazards of a substance, and are determined by authoritative bodies, such as the US EPA or the National Institutes of Health.

Information Request Sent

this means that an email letter has been sent to the manufacturer requesting information about a specific product. This IR may ask the manufacturer to share HPD type data, a GreenScreen Assessment, or a C2C certification in order to meet Google’s Healthy Materials criteria

Intentional Content

each discrete chemical, polymer, metal, bio-based material, or other substance added to the product by the manufacturer or supplier that exists in the product as delivered for final use requires its own line entry and must account for over 99% of the total product. To add content you may enter it by using a CAS registry number, chemical name, abbreviations, common/ trade names, genus/species (for biobased materials), product or manufacturer name (for components)

Inventory

list of product contents, ingredients

Lifecycle

In biology, the term “lifecycle” describes the arc an organism undergoes from birth, through stages of growth and development, to its death. When applied to building products, “lifecycle”describes the arc that chemicals or materials take from the extraction of the raw materials needed for their creation, through their synthesis and inclusion in a building product, the period of time that the product is installed in a building, its eventual removal from the building, and its disposal/reuse/recycling at the end of its useful life. Products (and the chemicals and materials used to make them) often present human and environmental health hazards at any step in this lifecycle.

Material Health

listing the ingredients and present chemical hazards of a product and optimizing towards safer materials

Mutagen

Can cause or increase the rate of mutations, which are changes in the genetic material in cells. This can result in cancer and birth defects.

Optimization

the absence of any “chemicals of concern” in the product/material formulation.

Ozone Depletion

Can contribute to chemical reactions that destroy ozone in the earth’s upper atmosphere.

PBTs

Persistent, Bio-accumulative Toxicants; these are chemicals that are toxic, persist in the environment, bioaccumulate in the food chains, and consequently pose risks to the human health and environment

Persistent Bioaccumulative Toxicant (PBT)

Does not break down readily from natural processes, accumulates in organisms, concentrating as it moves up the food chain, and is harmful in small quantities.

Portico

formerly known as the Healthy Materials Tool; is a new portal for entering and accessing building  product data. Portico is a database that allows project teams unparalleled access to a vast selection of building products. Portico automatically screens manufacturer product information so that products are available in front of Google’s design teams right away.

Predicted from Process Chemistry

Fully disclosed projected residuals based on process chemistry. This option is suggested for manufacturers without the capability of measuring actual residuals. Indicate the tool or other basis for prediction in the Disclosure Notes. The HBN Pharos tool is an example of a tool that predicts potential residuals.

Publish

share HPD information solely to Google, not to general public. If public, please share public URL in the transparency section

Reproductive Toxicant

Can disrupt the male or female reproductive systems, changing sexual development, behavior or functions, decreasing fertility, or resulting in loss of a fetus during pregnancy.

Residual Content

the by-product of a reaction of two or more chemicals that are used in the manufacturing process; known as trace substances remaining in the product from manufacturing steps (such as monomers and catalysts) or contaminants that come with raw materials. Residuals can be known from testing as well as estimated from process chemistry assessment. Predicted from Process Chemistry definition noted above.

Respiratory Sensitization/Asthmagen

Can result in high sensitivity such that small quantities trigger asthma, rhinitis, or other allergic reactions in the respiratory system. This can can exacerbate current asthma as well as cause the disease of asthma.

Screening

review contents against authoritative chemical hazard lists. Health Product Declaration standard uses screening as a pathway to understand and assess products for any human health hazard endpoints.

Self-declared

a product disclosure and screening/assessment which is created “in-house” by the manufacturer of the product, and does not utilize a third party assessor.

Third Party Assessor

an independent assessment body which is not affiliated with the manufacturer or the product.

Tint

Tints are a mix of pigments and other ingredients that give paints their distinct color. These tints can be a substantial source of VOC content in addition to whatever VOCs are in the paint itself. Darker and richer colors will tend to be higher in VOC content. Some manufacturers have developed low or zero VOC tint lines that can be used to insure that a low VOC paint product remains so even in dark or rich colors.

Transparency

the level of product/material formulation information (including ingredients names and associated hazards) being shared by the manufacturer with the end users (i.e. public, third party, Google).  Portico’s transparency category gives points to manufacturers who share product information (HPD) publicly rather than just to Google.

VOC

Volatile Organic Compound

VOC Content

provide the regulatory VOC content  for liquid/wet applied product in g/L; if the VOC content has not been third party certified and there is no standard for the product, indicate “none” on the VOC content line. If the product is not wet applied, indicate N/A

VOC Emission

emissions testing and certification for any product for which the current version of the CDPH (CA Department of Public Health) Standard Method provides emission scenarios

VOCs

Volatile organic compounds (VOC) means any compound of carbon (excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate), which react in the atmosphere in the presence of sunlight.

Verification

assessments verified by an independent, third party assessor, in compliance with specific requirements pertaining to the standard at hand.

Zero VOC

5 g/L cutoff threshold recognized by SCAQMD for products that are Zero VOC

ppm

parts per million (1,000 ppm = 0.1%; 100 ppm = 0.01%).

(Source: https://homefree.healthybuilding.net/glossary)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


13 Examples of Green Architecture

The Morris & Gwendolyn Cafritz Foundation Environmental Center

The nickname for the Morris and Gwendolyn Cafritz Foundation Environmental Center is the Grass Building, and it perfectly captures its spirit. It’s a structure so thoughtfully designed it’s almost as energy-efficient and low impact as the greenery that surrounds it.

The Maryland building is part of an educational farm on the Potomac River Watershed that the Alice Ferguson Foundation used to teach people about the natural world. This new building—which became the 13th in the world to receive full Living Building Challenge certification in June 2017—is an educational facility designed to blur the lines between indoors and out, while still providing shelter as needed. “Part of the intent of the building is to be in the landscape and still have a bathroom to use,” says Scott Kelly, principal-in-charge at Re:Vision, a Philadelphia-based architecture and design studio.

Further Reading:
https://gbdmagazine.com/2017/grass-building
https://www.aia.org/showcases/92581-the-morris–gwendolyn-cafritz-foundation-env
https://living-future.org/lbc/case-studies/morris-gwendolyn-cafritz-foundation-environmental-center
http://hughloftingtimberframe.com/gallery/commercial/cafritz-foundation-environmental-center
http://www.cafritzfoundation.org/

Brock Environmental Center

Drawing thousands of students, the Brock Environmental Center is a regional hub for the Chesapeake Bay Foundation, in Virginia Beach, Virginia, supporting its education and wetlands restoration initiatives. A connection to nature defines the building’s siting, which provides sweeping views of the marsh and also anticipates sea-level rise and storm surges with its raised design. Parts were sourced from salvage: Its maple floors once belonged to a local gymnasium while school bleachers, complete with graffiti, were used for interior wood trim. The center was recognized for its positive footprint: It has composting toilets, captures and treats rainfall for use as drinking water, and produces 80 percent more energy than it uses, selling the excess to the grid.

Further Reading:
http://www.cbf.org/about-cbf/locations/virginia/facilities/brock-environmental-center
https://living-future.org/lbc/case-studies/the-chesapeake-bay-brock-environmental-center
https://www.visitvirginiabeach.com/listing/chesapeake-bay-foundations-brock-environmental-center/979
https://www.aia.org/showcases/76311-brock-environmental-center

Discovery Elementary School

Students have three distinct, age-appropriate playgrounds—with natural elements such as rocks and fallen trees—at Arlington, Virginia’s Discovery Elementary School. The name honors astronaut John Glenn, who returned to space on the Discovery shuttle and once lived in the neighborhood. Exploration is a theme at the school, whose interior focuses on forests, oceans, atmosphere, and the solar system. The largest zero-energy school in the country, it offers “hands-on learning around energy efficiency and generation,” jurors noted. The school maximizes natural light and provides views to the outside in all classrooms.

Further Reading:
https://www.aia.org/showcases/71481-discovery-elementary-school-
https://www.aiadc.com/sites/default/files/031%20-%20DiscoveryElementarySchool.pdf
https://www.google.com/search?q=Discovery+Elementary+School+AIA&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjS-pnHo6LcAhUMON8KHSlUDlYQsAQIdA&biw=1583&bih=1187

Bristol Community College

A laboratory is an energy-intensive enterprise, with specialized lighting and ventilation needs. That’s why jurors praised the airy health and science building at Bristol Community College, in Fall River, Massachusetts, for its net-zero energy achievement, “a difficult feat,” they noted, “in a cold climate like New England’s.” The move saves $103,000 in annual operating costs and allows the college, which offers a suite of courses in sustainability and energy, to practice what it teaches. Part of a holistic campus redesign, the new building’s location increases the density—and thus walkability—of campus for students.

Further Reading:
https://www.aia.org/showcases/71576-bristol-community-college-john-j-sbrega-heal
https://www.mass.gov/service-details/bristol-community-college-john-j-sbrega-health-and-science-building
http://www.architectmagazine.com/project-gallery/bristol-community-college-john-j-sbrega-health-and-science-building_o

Central Energy Facility

Orange and red pipes flaunt their role in “heat recovery” at Stanford University’s Central Energy Facility. The center for powering the California campus—more than a thousand buildings—the facility was transformed from an aging gas-fired plant to one fueled mostly by an off-site solar farm, fulfilling a goal of carbon neutrality and reducing energy use by a third. With large health care and research buildings, the campus needs as much heating as cooling; now a unique recovery system taps heat created in cooling processes to supply 93 percent of the heating and hot water required for campus buildings. The plant reduces Stanford emissions by 68 percent and potable water usage by 18 percent, potentially saving millions of dollars and one of the state’s scarce resources.

Further Reading:
https://www.aia.org/showcases/25976-stanford-university-central-energy-facility
https://sustainable.stanford.edu/new-system
https://www.archdaily.com/786168/stanford-university-central-energy-facility-zgf-architects
https://www.zgf.com/project/stanford-university-central-energy-facility

Ng Teng Fong General Hospital

Like other buildings in Singapore, Ng Teng Fong General Hospital incorporates parks, green roofs, and vertical plantings throughout its campus. But the city-state’s hospitals haven’t traditionally offered direct access to fresh air, light, and outdoor views. This hospital marks a dramatic change, optimizing each for patients. About 70 percent of the facility is naturally ventilated and cooled by fans, cross-ventilation, and exterior shading, saving on precious water resources. The building uses 38 percent less energy than a typical hospital in the area.

Further Reading:
https://www.aia.org/showcases/76821-ng-teng-fong-general-hospital–jurong-commun
http://www.hok.com/about/news/2017/07/25/ng_teng_fong_general_international_academy_for_design_and_health_awards
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017/58f7c23ce58eceac31000615-aia-selects-top-10-most-sustainable-projects-of-2017-photo
http://www.topicarchitecture.com/articles/154396-how-modern-hospitals-recognize-the-impact-o

Eden Hall Farm, Chatham University

After receiving the donation of 388-acre Eden Hall Farm, 20 miles north, Pittsburgh’s Chatham University created a satellite campus centered around a sustainable living experiment. The university views the landscape—an agricultural area adjacent to an urban center—as critical to supporting cities of the future. The original buildings are complemented by new facilities for 250 residential students (and eventually 1,200), including a dormitory, greenhouse, dining commons, and classrooms. Students get hands-on experience in renewable energy systems—the campus generates more than it uses—sustainable agriculture and aquaculture, waste treatment, and water management. Now home to the Falk School of Sustainability, the farm is producing the next generation of environmental stewards, who follow in the footsteps of alum Rachel Carson.

Further Reading:
https://www.aia.org/showcases/76481-chatham-university-eden-hall-campus
http://www.chatham.edu/news/index.php/2018/01/chatham-views/from-eden-hall-pioneer-to-farm-manager
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017
https://falk.chatham.edu/masterplan.cfm

Milken Institute School of Public Health, George Washington University

At George Washington University’s Milken Institute School of Public Health, located in the nation’s capital, design embodies well-being. Built around an atrium that admits light and air, the structure encourages physical activity with a staircase that spans its eight levels. A green roof reduces storm runoff; rainwater is collected and stored for plumbing, resulting in a 41 percent reduction in toilet fixtures’ water use. Limestone panels (left) were salvaged from the previous building on the site. Materials used throughout the building contain recycled content.

Further Reading:
https://www.aia.org/showcases/71306-milken-institute-school-of-public-health
https://publichealth.gwu.edu/content/milken-institute-school-public-health-wins-excellence-architecture-new-building-merit-award
http://designawards.architects.org/projects/honor-awards-for-design-excellence/milken-institute-school-of-public-health-george-washington-university/

National Oceanic and Atmospheric Administration’s Inouye Regional Center

Located at the heart of Pearl Harbor, on Oahu’s Ford Island, the National Oceanic and Atmospheric Administration’s Inouye Regional Center repurposed two airplane hangars—which narrowly escaped destruction in the 1941 attack—linking them with a new steel and glass building (right). The research and office facility for 800 employees was raised to guard it from rising sea levels. Given the size of the hangars, daylight illuminated only a small fraction of the space, so specially crafted lanterns reflect sunlight further into their interiors. Necessity required invention: Due to anti-terrorism regulations, no operable windows were allowed in the space. Through a passive downdraft system that taps prevailing sea breezes, the building is completely naturally ventilated. The adjacent waterfront was returned to a more natural state with native vegetation.

Further Reading:
https://www.aia.org/showcases/76911-noaa-daniel-k-inouye-regional-center
http://www.hpbmagazine.org/NOAA-Daniel-K-Inouye-Regional-Center-Honolulu-Hawaii/
http://www.architectmagazine.com/project-gallery/noaa-daniel-k-inouye-regional-center_o
http://www.hok.com/design/type/government/national-oceanic-and-atmospheric-administration-noaa/

R.W. Kern Center

Serving as the gateway to Hampshire College, in Amherst, Massachusetts, the multipurpose R.W. Kern Center holds classrooms, offices, a café, and gallery space—and is the place where prospective students are introduced to campus. The school converted what was once an oval driveway into a wildflower meadow, now encouraging a pedestrian approach (seen above). The center is self-sustaining, generating its own energy through a rooftop solar array, harvesting its water from rainfall, and processing its own waste. Its gray water treatment system is in a pilot program for the state, and may pave the way for others.

Further Reading:
https://www.aia.org/showcases/76921-rw-kern-center
https://architizer.com/projects/rw-kern-center
https://www.hampshire.edu/discover-hampshire/rw-kern-center

Manhattan 1/2/5 Garage & Salt Shed

Two buildings belonging to New York City’s sanitation department redefine municipal architecture. Resembling a grain of salt, the cubist form of the Spring Street Salt Shed holds 5,000 tons for clearing icy streets. The Manhattan 1/2/5 Garage (background), whose floors are color-coded for each of the three districts, is home to 150 vehicles, wash and repair facilities, and space for 250 workers. The garage is wrapped in 2,600 aluminum “fins,” shading devices that pivot with the sun’s rays, reducing heat gain and glare through the glazed walls while still allowing views to the outside. Municipal steam heats and cools the building, so no fuels are burned. A 1.5-acre green roof reduces heat-island effect and filters rainwater. A condensate by-product of the steam is also captured, and, along with the rainwater, used for toilets and the truck wash. Combined with low-flow fixtures, the process reduced water consumption by 77 percent.

Further Reading:
https://www.dattner.com/portfolio/manhattan-districts-125-garage/
https://www.ohny.org/site-programs/weekend/sites/dsny-manhattan-125-sanitation-garage-salt-shed
https://www.aia.org/showcases/76671-manhattan-districts-125-garage–spring-stree
http://www.architectmagazine.com/project-gallery/manhattan-districts-1-2-5-garage-spring-street-salt-shed_o
https://www.burns-group.com/project/manhattan-125-garage-and-spring-street-salt-shed/

Starbucks Hillsboro, Oregon

Starbucks has been a leader in the development and implementation of a scalable green building program for over a decade .Starbucks joined the U.S. Green Building Council® (USGBC) in 2001 and collaborated with them to develop the LEED® for Retail program, an effort to adapt LEED (Leadership in Energy and Environmental Design) to new construction and commercial interior strategies for retail businesses. In 2008,Starbucks challenged themselves to use LEED certification not just for flagship stores and larger buildings, but for all new, company-operated stores. Many people, even internally, were skeptical, especially with Starbucks growth across the globe. But by collaborating with USGBC and other like-minded organizations, we have been able to integrate green building design not only into new stores but also into our existing store portfolio. Starbucks has also succeeded in providing a practical certification option for retailers of all sizes.

Further Reading:
https://www.starbucks.com/responsibility/environment/leed-certified-stores

The Edge, Deloitte

The Edge, located in Amsterdam, is a model of sustainability.is billed as the world’s most sustainable office building and has the certification to prove it. But, it’s more than that. The place is, well, fun. And interesting. And inviting. So much so that professionals are actually applying for employment with Deloitte Netherlands because they want to work in the building. That it has become a recruiting tool is a satisfying side effect of a project designed to both redefine efficiency and change the way people work. “We wanted to ensure that our building not only had the right sustainability credentials, but was also a real innovative and inspiring place for our employees,” says Deloitte Netherlands CEO Peter Bommel.

Read the rest of this entry »


Benefits of Using Digital Twins for Construction

Technologies like augmented reality in construction are emerging to digitalize the construction industry, making it significantly more effective.

What if we could have instant access to all the information about a construction site, down to smallest details about every person, tool, and bolt? What if we could always be sure about the final measurements of a beam or that soil volumes in the cuts are close to those of the fills? What if we could always track how fast the supply of materials runs out, and re-order supplies automatically?

All this is achievable with a digital twin — a concept of having a real-time digital representation of a physical object.

The following are some real-time digital twins applications on construction sites.

3d-model

Automated Progress Monitoring

Progress monitoring verifies that the completed work is consistent with plans and specifications. A physical site observation is needed in order to verify the reported percentage of work done and determine the stage of the project.

By reconstructing an as-built state of a building or structure we can compare it with an as-planned execution in BIM and take corresponding actions to correct any deviations. This is usually done by reconstructing geometry of a building and registering it to the model coordinate systems, which is later compared to an as-planned model on a shape and object level.

Often data for progress monitoring is collected through the field personnel and can be hugely subjective. For example, the reported percentage of work done can be faster in the beginning and much slower close to the end of the project. People are often initially more optimistic about their progress and the time needed to finish the job.

Hence, having automated means of data collection and comparison means that the resulting model to as-designed BIM models is less liable to human error. Digital twins solve the common construction process problems.

As-Built vs As-Designed Models

With a real-time digital twins, it is possible to track changes in an as-built model — daily and hourly. Early detection of any discrepancies can lead to a detailed analysis of historical modeling data, which adds an additional layer of information for any further decision-making processes.

The project manager can then reconstruct the steps that led to the error and make changes in the future work schedule in order to prevent any similar mistakes from occurring. They can also detect under-performers and try to fix the cause of the problem earlier in the project or plan the necessary changes to the budget and timescale of the whole project.

Resource Planning and Logistics

According to the Construction Industry Institute, about 25% of productive time is wasted on unnecessary movement and handling of materials.

Digital twin technology provides automatic resource allocation monitoring and waste tracking, allowing for a predictive and lean approach to resource management. With digital twin technology companies would avoid over-allocation and dynamically predict resource requirements on construction sites, thus avoiding the need to move resources over long distances and improving time management.

Safety Monitoring

The construction industry is one of the most dangerous sectors in the world. According to the Bureau of Labor Statistics in the United States, more than four thousand construction workers died on-site between 2008 and 2012.

The real-time site reconstruction feature digital twins allows the industry’s companies to track people and hazardous places on a site, so as to prevent inappropriate behavior, usage of unsafe materials, and activity in hazardous zones. A company can develop a system of early notification, letting a construction manager know when a field worker is located in dangerous proximity to working equipment and sending a notification about nearby danger to a worker’s wearable device.

Microsoft recently shared a great vision of how AI combined with video cameras and mobile devices can be used to build an extensive safety net for the workplace.

Quality Assessment

Image-processing algorithms make it possible to check the condition of concrete through a video or photographic image. It is also possible to check for cracks on columns or any material displacement at a construction site. This would trigger additional inspections and thus help to detect possible problems early on.

See an example of how 2D images using 3D scene reconstruction can be used for concrete crack assessments.

Optimization of Equipment Usage

Equipment utilization is an important metric that construction firms always want to maximize. Unused machines should be released earlier to the pool so others can use them on other sites where they are needed. With advanced imaging and automatic tracking, it is possible to know how many times each piece of machinery has been used, at what part of the construction site, and on what type of the job.

Monitoring and Tracking of Workers

Some countries impose tough regulations on how to monitor people presence on a construction site. This includes having a digital record of all personnel and their location within the site, so that this information could be used by rescue teams in case of emergency. This monitoring is another digital twins application. Still, it is better to integrate digital twin-based monitoring with an automatic entry and exit registration system, to have a multi-modal data fused into a single analytics system.

Getting Data for Digital Twins

Some ways to gather data to be used for digital twins includes the following:

  1. Smartphone Cameras
  2. Time-Lapse Cameras
  3. Autonomous UAV and Robots
  4. Video Surveillance Cameras
  5. Head-mounted Cameras and Body Cameras

Image data processing algorithms for digital twins can be created with the following methods:

  1. 3D Reconstruction: Conventional Photogrammetry
  2. 3D Reconstruction: Structure from Motion
  3. Object Detection and Recognition
  4. Localization
  5. Object Tracking

(Source: https://www.intellectsoft.net/blog/advanced-imaging-algorithms-for-digital-twin-reconstruction)

From an Investor’s Viewpoint

On projects to date, this approach has proven to save time, reduce waste and increase efficiencies.

From a Standardization Proponent’s Viewpoint

Open, sharable information unlocks more efficient, transparent and collaborative ways of working throughout the entire life-cycle of buildings and infrastructure.

From a Solution Provider’s Viewpoint 

While the digital twin is needed initially for planning and construction, it’s also intended to provide the basis for building operations moving forward.

(Source: https://www.siemens.com/customer-magazine/en/home/buildings/three-perspectives-on-digital-twins.html)

The vision of “construction 4.0” refers to the 4th industrial revolution and is a fundamental challenge for the construction industry. In terms of automated production and level of digitalization, the construction industry is still significantly behind other industries. Nevertheless, the mega-trends like Big Data or the Internet of Things offer great opportunities for the future development of the construction sector. Prerequisite for the successful Construction 4.0 is the creation of a digital twin of a building. Building Information Modeling (BIM) with a consistent and structured data management is the key to generate such a digital building whose dynamic performance can be studied by building simulation tools for a variety of different boundary conditions.

Along the total life cycle from design to construction, operation and maintenance towards remodeling or demolition, the digital twin follows all modifications of the real building and dynamically readjusts itself in case of recorded performance differences.

Thus, for the whole life span of the real building, performance predictions generated with the virtual twin represent an accurate basis for well-informed decisions. This helps to develop cost-effective operation modes, e.g. by introducing new cyber-controlled HVAC systems. The digital twin may also analyze the building’s dynamic response to changes in occupation or energy supply; it also indicates the need for building maintenance or upgrades.

The digital twin follows all modifications of the real building and dynamically readjusts itself in case of recorded performance differences.

(Source: https://www.bau.fraunhofer.de/en/fieldsofresearch/smartbuilding/digital-twin.html)

Gartner-digital-twin-best-practices-to-tackle-challenges

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Smart Cities

Smart-City-in-a-BoxSmart cities use data and technology to create efficiencies, improve sustainability,
create economic development, and enhance quality of life factors for people living and
working in the city. It also means that the city has a smarter energy infrastructure.

(Source: https://en.m.wikipedia.org/wiki/Smart_city)

  • Emerging trends such as automation, machine learning and the internet of things
    (IoT) are driving smart city adoption.
  • Smart transit companies are able to coordinate services and fulfill riders' needs in real time, improving efficiency and rider satisfaction. Ride-sharing and bike-sharing are also common services in a smart city.
  • Energy conservation and efficiency are major focuses of smart cities. Using smart sensors, smart streetlights dim when there aren't cars or pedestrians on
    the roadways. Smart grid technology can be used to improve operations, maintenance and planning, and to supply power on demand and monitor energy
    outages.
  • Using sensors to measure water parameters and guarantee the quality of
    drinking water at the front end of the system, with proper wastewater removal
    and drainage at the back end.
  • Smart city technology is increasingly being used to improve public safety, from
    monitoring areas of high crime to improving emergency preparedness with sensors. For example, smart sensors can be critical components of an early warning system before droughts, floods, landslides or hurricanes.
  • Smart buildings are also often part of a smart city project. Legacy infrastructure can be retrofitted and new buildings constructed with sensors to not only provide real-time space management and ensure public safety, but also to monitor the structural health of buildings.
    Singapore Financial District skyline at dusk.
  • Smart technology will help cities sustain growth and improve efficiency for citizen
    welfare and government efficiency in urban areas in the years to come.
    Water meters and manhole covers are just a couple of the other city components
    monitored by smart sensors. Free and/or publicly available Wi-Fi is another perk smart cities often include.
  • San Diego installed 3,200 smart sensors in early 2017 to optimize traffic and parking
    and enhance public safety, environmental awareness and overall livability for its
    residents. Solar-to-electric charging stations are available to empower electric vehicle use, and connected cameras help monitor traffic and pinpoint crime.
  • Often considered the gold standard of smart cities, the city-state of Singapore uses
    sensors and IoT-enabled cameras to monitor the cleanliness of public spaces, crowd
    density and the movement of locally registered vehicles. Its smart technologies help
    companies and residents monitor energy use, waste production and water use in real time. Singapore is also testing autonomous vehicles, including full-size robotic buses, as well as an elderly monitoring system to ensure the health and well-being of its senior citizens.
  • In Dubai, United Arab Emirates, smart city technology is used for traffic routing, parking, infrastructure planning and transportation. The city also uses telemedicine and smart healthcare, as well as smart buildings, smart utilities, smart education and smart tourism.
    Smart City Barcelona Spain
  • The Barcelona, Spain, smart transportation system and smart bus systems are complemented by smart bus stops that provide free Wi-Fi, USB charging stations and bus schedule updates for riders. A bike-sharing program and smart parking app that includes online payment options are also available. The city also uses sensors to monitor temperature, pollution and noise, as well as monitor humidity and rain levels.

(Sources: https://internetofthingsagenda.techtarget.com/definition/smart-city and https://www.engadget.com/2016/11/03/singapore-smart-nation-smart-city/)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Our Exclusive ILMA Interview with @KimVierheilig

AECOM welcomed Kim Vierheilig, AIA, LEED AP BD+C as vice president and managing principal for our Design and Consulting Services New Jersey Buildings + Places practice in June of 2018. Kim brings 19 years of experience in the development and leadership of high-performing teams and has worked across the education, transit, hospitality and corporate commercial sectors. As managing principal for the New Jersey team, she will provide strategic oversight, management and direction for the region’s architecture; engineering; interiors; design + planning/ economics; strategy plus and asset advisory practices.

“In everything that we do, we create value,” says Kim. “Our focus is on design excellence and creating value by bringing the very best in interdisciplinary thinking to our clients and our communities. I’m thrilled to work with the talented team here at AECOM to develop effective, innovative and holistic solutions for our region’s most pressing challenges.”

Prior to joining AECOM, Kim most recently served as vice president for another firm where she managed the architectural, business development and marketing departments. Over the course of her career, she has partnered with clients across markets to deliver highly engaging environments. With clients such as Unilever, Four Seasons and Marriott Hotels and many K-12 and higher education institutions, she has built a portfolio of award-winning work and is widely recognized for her impact on the development industry. In 2017, Kim was named one of the Best 50 Women in Business by NJBIZ and received the Outstanding Woman Award from the Women Builder’s Council. She has also been recognized in the NJBIZ 40 Under 40 and honored with the 2016 Smart CEO Brava Award. From the New Jersey Institute of Technology, she holds a Master of Science in Management and a Bachelor of Architecture.

“Kim will lead [AECOM’s] teams in New Jersey to connect and creatively partner with our clients to develop the most impactful projects in the region,” says Tom Scerbo, vice president, Buildings + Places, New York metro regional lead. “Kim’s depth of experience leading teams to deliver complex, functional buildings and places affords our team strategic growth opportunities and brings tremendous value to our clients.”

 

ILMA INTERVIEW

When and why did you decide to become an Architect?    

Growing up an only child, I was always encouraged to participate in anything that was of interest. My weekends often involved household construction projects with my dad, which I enjoyed tremendously. At the age of ten, I decided I wanted to become an architect. Architecture was the natural choice of a profession that blended creativity and science.

What were some of the challenges of achieving your dream?     

As a woman in the architecture and engineering industry, where women make up only 15% of the job force, there were several challenges I faced to get to where I am today. In beginning of my career, I was the sole woman at the firm slotted as the office “receptionist,” where I answered phones and made coffee while designing and working on building projects. I was told I was not allowed to go into the field for construction site visits, even though my male counterparts were allowed, because I was “too much of a liability.” I realized that I could either complain about the situation or take what opportunities presented themselves and use these to better myself.  It wasn’t long until in addition to answering the phones, clients were calling to talk to me about projects, not just get transferred to a male colleague.  What I’ve learned is that in every bad situation there is something you can take from it to grow both personally and professionally.  Although eventually I left that firm, to find a company that more fully supported my development as an architect, there is no doubt my early work experiences made me a more passionate professional who wants to support the next generation of female architects.

How does your family support what you do?  

My family has always been extremely supportive of my career. As a partner of my firm, I often travel or attend evening receptions. I am fortunate enough to rely on my family’s support which has been a major factor in my success.

How do Architects measure success?    

I like to think I have a broader vision of what architects and engineers can bring to their communities through the design and construction industry. Almost all of the projects we work on have an impact on our communities; a successful project is one that fosters long-term relationships with the client and positively impacts the community.

What matters most to you in design?    

To me, designing a space that sparks creativity is most important. Using a holistic design approach, we focus on incorporating light, flexibility, choice, connection, complexity, and color into all of our designs.

What type of technology do you see in the design and construction industries?

Over the last few years, we’ve seen a significant shift in technology in the A/E/C industry. We are now incorporating virtual reality renderings and realistic walk-throughs of buildings or spaces, as well as, 3D printed models to allow our clients to better understand our design before construction begins.

How do you hope to inspire / mentor the next generation of Architects?   

I have been active in mentoring female architects on many different levels, from helping to fund architectural scholarships, to lobbying for change in the intern development process, assembling opportunities through design competitions to promote general learning, and serving as an individual mentor to numerous staff with her firm. I have partnered with various vendors and professional organizations to bring awareness about the challenges facing female architects. As such, I previously served as the American Institute of Architecture (AIA) Women in Architecture Chair for New Jersey to educate women on how to conduct business in a male-dominated industry by hosting seminars and providing networking opportunities with successful women speakers from various disciplines.

What advice would you give aspiring architects (K-12)? College students? Graduates?

I am an advocate and mentor for young women who wish to pursue a career in the Science, Technology, Engineering, and Math (STEM) fields. If I could give any advice to aspiring architects, I would say to break the barriers and follow your passion. This is a great industry with amazing potential.

Final Thoughts on How to Be Successful?

Continue to push forward every day by overcoming any hurdles that might face you and success will find you.

For more exclusive ILMA interviews click here.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Our Exclusive ILMA Interview with Rosario Mannino @RSMannino

Rosario Mannino was born and raised in New Jersey.  He holds a Bachelor of Architecture from Florida Atlantic University and a Professional Certificate from New York University in Construction Project Management. Eight years after graduating from FAU, Mannino founded the Architect-Led Design-Build company RS|MANNINO Architecture + Construction.  RS|MANNINO builds on our diverse professional and construction backgrounds to provide a balanced and thoughtful approach to our clients’ projects. Together with our trusted network of professionals, trade and supplier resources, we bring the expertise and hands-on experience in architecture, design, engineering, construction trades, and project management necessary to make every project we take on a success. They approach everything we do with a commitment to an integrated design and construction process.  For more information visit them online FacebookTwitter; LinkedInWebsite

ILMA INTERVIEW

When did you first become interested in Architect-Led Design-Build?

I knew I wanted to be an architect from a very young age.  Growing up around construction, I was so intrigued by the entire process.  I loved being on the job site watching the architectural plans unfold into a beautiful home or building.  I always thought I had to decide on which path to pursue: architecture vs. construction/office vs. jobsite.  I had been exploring the idea of both disciplines from a very young age, and it grew into a focused research project for me by the time I reached high school.  I don’t think there was ever this “ah ha” moment.  It was a passion that I had from the start.

Can you describe the process of ALDB?

As the Architect, we contract with the owner both to design and to construct a building, and we procure the construction services by contracting directly with the various construction trades.

Can you walk us through a typical project?

In ALDB, we start our projects very similarly to a traditional method.  We start with a budget and scope.  If the budget and scope are approved, we start to design.  Once we complete our schematic design, we provide an updated preliminary estimate.  Once we confirm we are within budget, we continue to refine the design and the cost estimates.  We want our clients to be informed and included throughout the entire process.   This factor creates a trusting relationship between our firm and our clients.  With our method, the clients only need to communicate with us.  There are less parties involved making communication much more efficient.

How are the fees structured?

Depends on the complexity and size of the project; some are hourly design fees with the Construction documents set at a fixed fee which is determined after Schematic Design.  Most of our projects are defined well enough that we can provide a professional fee plus reimbursable expenses.  Our Construction Management fee is a fixed fee which also includes a pre-construction management fee.  Occasionally we will perform Construction as a fixed price.

What are some of the risks and rewards of ALDB?

If a problem arises, there is only one place to point the finger.  In the traditional design-bid-build method, miscommunication between Architect and Contractor can cause unnecessary tension.  With ALDB, the entire process is much more cohesive creating a team-like environment. The clients also feel a sense of comfort when only having to communicate with one entity.

What are the three greatest challenges with ALDB process?

Higher Insurance premiums – This is one of the main reasons why we separate our business entities, having separate insurance for both entities and separate contracts for the client.

Most Architecture firms can take on smaller projects if the work load is slowing down, and most builders have very small overhead to compensate for the slower times. With ALDB, you need to have separate staff for both Architecture and Construction; it’s a bigger machine to feed.

Training new staff is much more of an investment because overall, they are becoming much more knowledgeable about our whole profession. There is even more training involved because new staff must learn both Architecture and Construction. It is extremely gratifying to educate Architects to think in a different way.

What are the three greatest advantages of ALDB?

One of the best advantages of being an ALDB firm is that we get to work directly with the craftsmen themselves to discuss how we can make improvements to the project; it is a learning experience for both of us. We appreciate this close relationship, and I am certain our craftsmen enjoy working in close contact with the designer. The designer and the craftsman work directly together.

As the Architect, we take on a role that allows better control of project budgets, schedules, and overall project quality, including the quality of design.

It’s so much fun. I think it’s so much fun because we are truly going back to being Master builders. As Architects we love to problem solve; that’s what we do all day long, but now it’s even more in depth and more dynamic.

Do you see ALDB as a way for Architects to take back “control” of the design and construction process?

For certain markets, yes.  I have had the pleasure of working on projects with unlimited design budgets, having total control of the project as the Architecture firm.  In reality, not every client is going to have an unlimited budget.  The client relationship in ALDB is far greater than in a traditional design-bid-build method.  We have found our clients to be so much more appreciate of our talents on our design-build projects vs. our design only jobs.  Some of our design jobs have a 2-3 month duration, followed by phone calls and quick site meetings.  In design-build, we have a much closer relationship with our clients; most of them feel like family before the project is over!

Why do you think that most Architects, Clients and Contractors shy away from ALDB?

For Architects, it is not necessarily something they ever thought about because they weren’t introduced to it.  We are trained in (most) schools to be Starchitects with grand budgets.  After school and our internship is completed, most architects find the niche they are most comfortable in.  I cannot say that ALDB is easy nor is it for everyone to pursue.  There is a more executive and dynamic role; there is a much more entrepreneurial mode to ALDB as opposed to running a boutique design firm.  You can be a one-person design firm, but to do design-build you need to build a solid team.  The daily tasks of designing, managing the office, managing the sites, and keeping finances in order is not for everyone, nor can one person do it all.  It requires a great team, and we are fortunate to have that.

I have not yet met a client who shied away from ALDB. However, we do work on design only jobs.  This usually happens when the client already has a relationship with a contractor.  We are agreeable to this because we can only build so much, and we want our clients to be comfortable with who they are working with.

For contractors, there is a sense of losing the market.  Good builders and contractors should not be concerned.  They may choose to adapt, but to be honest I do not think this will be some sweeping trend in the AEC industry.

What are some of the tools you use (from AIA, NCARB, Insurance Company, Other Professional Organizations) to help you manage your firm’s performance and reduce risk?

I have read a lot of literature on ALDB; the AIA has a few great articles as well as a book on ALDB.  There is an organization specifically for design-build called Design Build Institute of America (DBIA).  This organization is geared more toward government and large-scale projects.  There are also a few attorneys who have published articles on ALDB that have been very helpful.

My research has lead me to separate my design and construction contracts, but each project is unique.  I treat each project differently.  I cannot really say I have a set method because our scale of work differs so greatly, spanning a large spectrum.  On one end, we have worked on small kitchen renovations, and on the other end we have done new construction on vacant lots.

What is the percentage of ALDB your firm is currently working on – what are the major differences between traditional project delivery vs ALDB projects?

Being recently engaged in a few large multi-family developments, we’ve found that we are providing more than the basic services on those scale projects.  This is due to our experience.  Developers are taking advantage of our management and construction background.  Our role is much more than just producing design documents.   I would say we are about 60% design only and 40% ALDB projects.

Is there anything you would like to see to make the ALDB even better for future projects?

I hope to see more architecture schools incorporating some type of design-build programs.  If Architects played a larger role, communities would greatly benefit.  It would be nice if ALDB gained more popularity so that clients can learn to appreciate Architects playing a larger role.

For more exclusive ILMA interviews click here.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


What Can Architects Do To Design Safer Classrooms For Our Children? Part 4: Safety Guidelines For Schools

ILMA Classroom 11.pngPhoto Source: The National Association of School Psychologists (NASP)

The Following is Based on the Final Report of the Sandy Hook Advisory Commission

School Site Perimeter Standards

  1. Crime Prevention Through Environmental Design (CPTED) is a crime prevention strategy that uses architectural design, landscape planning, security systems, and visual surveillance to create a potentially crime free environment by influencing human behavior and should be applied when appropriate.
  2. Fencing, landscaping, edge treatment, bollards, signage, exterior furnishings and exterior lighting may be used to establish territorial boundaries and clearly delineate areas of public, semi-public, semi-private, and private space.

Access Control

  1. School boundaries and property lines shall be clearly demarcated to control access to a school facility and shall clearly delineate areas of public, semi-public, semi-private, and private space.
  2. Where a school is a shared use facility that serves the community, internal boundaries shall be clearly defined to establish a distinct perimeter for both the school and the shared use facilities with separate and secure access points that are clearly defined. Boundaries may be defined by installing fencing, signage, edge treatment, landscaping, and ground surface treatment.
  3. The number of vehicle and pedestrian access points to school property shall be kept to a minimum and shall be clearly designated as such.
  4. Directional signage shall be installed at primary points of entry to control pedestrian and vehicular access and to clearly delineate vehicular and pedestrian traffic routes, loading/unloading zones, parking and delivery areas. Signage should be simple and have the necessary level of clarity. Signage should have reflective or lighted markings.
  5. A means shall be provided to achieve and enforce identity authentication and entry authorization at locations and areas established by school operations protocols.

Surveillance

  1. The design shall allow for the monitoring of points of entry/egress by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. At minimum, electronic surveillance shall be used at the primary access points to the site for both pedestrian and vehicular traffic.
  3. All points of vehicular entry/egress shall be adequately illuminated to enhance visibility for purposes of surveillance.
  4. Designated pedestrian and vehicular traffic routes shall be adequately illuminated to reinforce natural and or electronic surveillance during evening hours.
  5. Locate access points in areas of high visibility that can be easily observed and monitored by staff and students in the course of their normal activities. Natural surveillance may be maximized by controlling access points that clearly demarcate boundaries and spaces.
  6. Video surveillance systems may be used around the site perimeter to provide views of points of entry/egress and as a means to securely monitor an area when natural surveillance is not available.
  7. Lighting should be sufficient to illuminate potential areas of concealment, enhance observation, and to provide for the safety of individuals moving between adjacent parking areas, streets and around the school facility.
  8. Consider the design of video surveillance systems which have the ability to be used locally (on site) by emergency responders and viewed off-site at appropriate locations.

Parking Areas and Vehicular and Pedestrian Routes

  1. At the minimum, electronic surveillance shall be used at the primary access points to the site for both pedestrian and vehicular traffic.
  2. Designated pedestrian and vehicular points of entry/egress and traffic routes shall be adequately illuminated to reinforce natural and or electronic surveillance.
  3. Signage shall be posted at all vehicular access points and in delivery zones, parking areas and bus loading/unloading zones with rules as to who is allowed to use parking facilities and when they are allowed to do so. Signage should be simple and have the necessary level of clarity. Signage should have reflective or lighted markings.
  4. Parking areas shall be adequately illuminated with vandal resistant lighting.
  5. Parking shall be prohibited under or within the school building.
  6. Adequate lighting shall be provided at site entry locations, roadways, parking lots, and walkways from parking to buildings.
  7. Gas service rooms, exterior meters/regulators shall be secured.
  8. External access to school facilities shall be kept to a limited number of controlled entrances. Vehicular circulation routes shall be separated and kept to a minimum of two routes per project site for purposes of separating service and delivery areas from visitors‘ entry, bus drop-off, student parking and staff parking. Circulation routes shall be separated, clearly demarcated, and easily supervised. Provide vehicle interdiction devices at building entries to preclude vehicle access into the building.
  9. A drop-off/pick-up lane shall be designated for buses only with a dedicated loading and unloading zone designed to adequately allow for natural and/or electronic surveillance and to avoid overcrowding and accidents.
  10. Design entry roads so that vehicles do not have a straight-line approach to the main building. Use speed-calming features to keep vehicles from gaining enough speed to penetrate barriers. Speed-calming features may include, but are not limited to, speed bumps, safety islands, differing pavement surfaces, landscape buffers, exterior furnishings and light fixtures.
  11. Signage text should prevent confusion over site circulation, parking, and entrance location. Unless otherwise required, signs should not identify sensitive or high risk areas. However, signs should be erected to indicate areas of restricted admittance and use of video surveillance.
  12. Parking areas should be designed in locations that promote natural surveillance. Parking should be located within view from the occupied building, while maintaining the maximum stand-off distance possible.
  13. Locate visitor parking in areas that provide the fewest security risks to school personnel. The distance at which a potentially threatening vehicle can park in relation to school grounds and buildings should be controlled.
  14. Consider illuminating areas where recreational activities and other nontraditional uses of the building occur. If video surveillance systems are installed, adequate illumination shall be designed to accommodate it.
  15. Consider blue light emergency phones with a duress alarm in all parking areas and athletic fields. If utilized, blue light emergency phones shall be clearly visible, readily accessible and adequately illuminated to accommodate electronic surveillance.
  16. Review vehicle access routes to the school and the site civil design with emergency responders to address their incident response requirements.
  17. Design walkways from all parking areas so that they can be observed from within the school by appropriate school staff.

Recreational Areas – Playgrounds, Athletic Areas, Multipurpose Fields

  1. The design shall allow for ground level, unobstructed views, for natural and/or electronic surveillance of all outdoor athletic areas, playgrounds and recreation areas at all times.
  2. Pre-kindergarten and kindergarten play areas shall be separated from play areas designed for other students and physically secured.
  3. Athletic areas and multipurpose fields at elementary school buildings shall contain a physical protective barrier to control access and protect the area.
  4. Playgrounds and other student gathering areas shall be located away from public vehicle access areas, such as streets or parking lots by a minimum of fifty (50) feet unless prohibited by site constraints.
  5. Consider a physical protective barrier around athletic areas and multipurpose fields at secondary school buildings to control access and protect the area.
  6. Locate access points to recreational areas in areas of high visibility that can be easily observed and monitored by staff and students in the course of their normal activities. Natural surveillance may be maximized by controlling access points that clearly demarcate boundaries and spaces.
  7. Pre-K and K play areas should be designed so that they have visual sight-lines to school staff. Fencing should not diminish this visual connection.
  8. Review the design of these areas with emergency responders to address their incident response requirements.

Communication Systems

  1. All classrooms shall have two way communications with the administrative office.
  2. All communication systems shall be installed in compliance with state building and fire code requirements.
  3. Emergency Communication Systems (ECS) and/or alarm systems shall have redundant means to notify first responders, supporting agencies, public safety officials and others of an event to allow for effective response and incident management. Alarm systems must be compatible with the municipal systems in place. These systems may include radio, electronic, wireless or multimedia technology which provides real time information (such as audio, visual, mapping and relevant data) directly to first responders. Points of Broadcast input for these systems shall be reviewed with emergency responders.  A minimum of 2 shall be provided.
  4. Emergency Communication Systems (ECS) shall be installed and maintained in accordance with NFPA 72, 2010, or the most current fire code standard adopted by the local/state construction code authority. ECS may include but is not limited to public address (PA) systems, intercoms, loudspeakers, sirens, strobes, SMS text alert systems, and other emerging interoperable resource sharing communication platforms. The design of these systems shall be reviewed with emergency responders.
  5. All new buildings shall have approved radio coverage for first responders within the building based upon the existing coverage levels of communication systems at the exterior of the building. The system as installed must comply with all applicable sections of the Federal Communication Commission (FCC) Rules for Communication Systems and shall coordinate with the downlink and uplink pass band frequencies of the respective first responders. Perform a radio audibility and intelligibility test and modify system design accordingly.
  6. All in-building radio systems shall be compatible with systems used by local first responders at the time of installation.
  7. Call buttons with direct intercom communication to the central administrative office and/or security office should be installed at key public contact areas.
  8. Develop a strategy and “security team” and equip them with hand-held radios so they can be effective participants in the radio communications system.

School Building Exterior – Points of Entry/Egress and Accessibility

  1. Points of entry/egress shall be designed to allow for monitoring by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. At minimum electronic surveillance shall be used at the primary points of entry.
  3. Lighting shall be sufficient to adequately illuminate potential areas of concealment and points of building entry, and, enhance natural and/or electronic surveillance, and discourage vandalism.
  4. Consider blue light emergency phones with a duress alarm along the building perimeter as needed to enhance security. If utilized, blue light emergency phones shall be clearly visible, readily accessible and adequately illuminated to accommodate electronic surveillance.
  5. Consider the use of forced entry resistance glazing materials for windows and glazed doors using laminated glass and/or polycarbonate to significantly improve forced entry delay time beyond standard glazing techniques. A five (5) minute forced entry solution should be the design standard.

Main Entrance / Administrative Offices / Lobby

  1. Main entrances shall be well lit and unobstructed to allow for natural and/or electronic surveillance at all times.
  2. The design shall allow for visitors to be guided to a single control point for entry.
  3. The main entrance assembly (glazing, frame, & door) shall be forced entry resistant to the project standard, with a forced entry time rating as informed by local law enforcement response timing.
  4. Plans shall carefully address the extent to which glazing is used in primary entry ways, areas of high risk and areas of high traffic and the degree to which glazing is installed or treated to be bullet, blast, or shatter resistant to enhance the level of security. The district‘s priorities for the use of natural surveillance, electronic surveillance, natural light and other related security measures may affect this decision and the overall level of security.
  5. Main entrance doors shall be capable of being secured from a central location, such as the central administrative office and/or the school security office.
  6. Video surveillance cameras shall be installed in such a manner to show who enters and leaves the building and shall be monitored at locations which are attended whenever the school is occupied.
  7. The design shall allow for providing visitor accessibility only after proper identification.
  8. The use of vestibules with forced entry resistant doors and glazing to the project standard should be the design standard.
  9. The central administrative offices and/or security offices should have an unobstructed view of the main entrance lobby doors and hallways. If feasible, administrative offices abutting the main entrance should be on an exterior wall with windows for natural surveillance of visitor parking, drop off areas, and exterior routes leading to the main entrance.
  10. Walls, forced entry resistant to the project standard, should be hardened in foyers and public entries. Interior and exterior vestibule doors should be offset from each other in airlock configuration.
  11. Use vestibules to increase security. The entrance vestibule shall have both interior and exterior doors that are lockable and controllable from a remote location and be designed to achieved enhanced force entry performance as identified to the project forced entry standards.
  12. When possible, the design should force visitors to pass directly through a screening area prior to entering or leaving the school. The screening area should be an entrance vestibule, the administration/reception area, a lobby check in station, an entry kiosk, or some other controlled area. This controlled entrance should serve as the primary control point between the main entrance and all other areas of the school.
  13. Control visitor access through electronic surveillance with intercom audio and remote lock release capability at the visitor entrance.
  1. Restrict visitor access during normal hours of operation to the primary entrance. If school buildings require multiple entry points, regulate those entry points with no access to people without proper identity authentication and entry authorization. Consider an electronic access control system for authorized persons if multiple entry points are utilized during normal hours of operation.
  2. Install a panic/duress alarm or call button at an administrative/security desk as a protective measure.
  3. Proximity cards, keys, key fobs, coded entries, or other devices may be used for access control of students and staff during normal hours of operation. The system may be local (residing in the door hardware) or global (building or district- wide). Prior to installing a customized door access control system refer to the local authority having jurisdiction for compliance with state building and fire code.
  4. Consider sensors that alert administrative offices when exterior doors at all primary and secondary points of entry are left open.
  5. Consider radio frequency access control devices at primary points of entry to allow rapid entry by emergency responders. Review this technology with the emergency responders which serve the school facility.
  6. Where “forced entry” required construction is required, the forced entry delay time shall be based on the ERTA, and have the forced entry designs informed/validated by a licensed architect, professional engineer or qualified security consultant.
  7. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.

Exterior Doors

  1. The design shall allow for the points of entry/egress to be monitored by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. Lighting at these entry points shall be sufficient to illuminate potential areas of concealment, enhance natural and/or electronic surveillance, discourage and protect against vandalism.
  3. Tertiary exterior doors shall be hardened to be penetration resistant and burglar resistant.
  4. All exterior doors shall be equipped with hardware capable of implementing a full perimeter lockdown by manual or electronic means and shall be numbered per the SSIC standards.
  5. All exterior doors shall be easy to lock and allow for quick release in the event of an emergency by authorized personnel and emergency responders.
  6. All exterior doors that allow access to the interior of the school shall be numbered in sequential order in a clockwise manner starting with the main entrance. All numbers shall be visible from the street or closest point of entry/egress, contrast with its background and be retro-reflective.
  7. Doors vulnerable to unauthorized access may be monitored by adding door contacts or sensors, or may be secured through the use of other protective measures, such as delayed opening devices, or video surveillance cameras that are available for viewing from a central location, such as the central administrative office and/or security office.
  8. Specify high security keys and cylinders to prove access control.
  9. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.

Exterior Windows/Glazing/Films

  1. Windows may serve as a secondary means of egress in case of emergency. Any “rescue window” with a window latching device shall be capable of being operated from not more than forty-eight (48) inches above the finished floor.
  2. Each classroom having exterior windows shall have the classroom number affixed to the upper right-hand corner of the first and last window of the corresponding classroom. The numbers shall be reflective, with contrasting background and shall be readable from the ground plain at a minimum distance of fifty (50) feet.
  3. Plans shall carefully address the extent to which glazing is used in primary entry ways, areas of high risk and areas of high traffic and the degree to which glazing is installed or treated to be bullet, blast, or shatter resistant to enhance the level of security. The district‘s priorities for the use of natural surveillance, electronic surveillance, natural light and other related security measures may affect this decision and the overall level of security.
  4. Design windows, framing and anchoring systems to be shatter resistant, burglar resistant, and forced entry resistant to the project forced entry standards, especially in areas of high risk. Whenever feasible, specify force entry resistant glazing on all exterior glazing.
  5. Resistance for glazing may be built into the window or applied with a film or a suitable additional forced entry resistant “storm” window.
  6. Classroom windows should be operable to allow for evacuation in an emergency. Review with the authority having jurisdiction and fire department to balance emergency evacuation, external access, and security requirements.

School Building Interior

  1. Interior physical security measures are a valuable part of a school‘s overall physical security infrastructure. Some physical measures such as doors, locks, and windows deter, prevent or delay an intruder from freely moving throughout a school and from entering areas where students and personnel may be located. Natural and electronic surveillance can assist in locating and identifying a threat and minimizing the time it takes for first responders to neutralize a threat.
  2. The design shall provide for controlled access to classrooms and other areas in the interior that are predominantly used by students during normal hours of operation to protect against intruders.
  3. All interior room numbers shall be coordinated in a uniform room numbering system format. Numbering shall be in sequential order in a clockwise manner starting with the interior door closest to the main point of entry. Interior room number signage shall be wall mounted. Additional room number signage may be ceiling or flag mounted. Interior room number signage specifications and installation shall be in compliance with ADA standards and other applicable regulations as required.
  4. Record documentation drawings shall be kept which include floor plans with the room numbering system. These drawings shall be safeguarded but available for emergency responders. Review opportunities for emergency responders agencies to have these drawings as well.
  5. Review design opportunities to create interior safe havens with forced entry resistant walls and doors. These may be libraries, auditoriums, cafeterias, gyms or portions of school wings or blocks of classrooms.
  6. Establish separate entrance and exit patterns for areas that have concentrated high- volume use, such as cafeterias and corridors, to reduce time required for movement into and out of spaces and to reduce the opportunity for personal conflict. Separation of student traffic flow can help define orderly movement and save time, and an unauthorized user will perceive a greater risk of detection.
  7. Consider intruder doors that automatically lock when an intruder alarm or lockdown is activated to limit intruder accessibility within the building. If installed, intruder doors shall automatically release in the event of an emergency or power outage and must be equipped with a means for law enforcement and other first responders to open as necessary.

Interior Surveillance

  1. An intrusion detection system shall be installed in all school facilities.
  2. If video surveillance systems are utilized, the surveillance system shall be available for viewing from a central location, such as the central administrative office and/or the school security office, and at points of emergency responder incident management. Review these locations with emergency responders in the design phase.
  3. Consider electronic surveillance in lobbies, corridors, hallways, large assembly areas, stairwells or other areas (such as areas of refuge/safe havens) as a means to securely monitor those areas when natural surveillance is not available.
  4. The design of a school facility should allow for the designation of controlled hiding spaces. A controlled hiding place should create a safe place for students and personnel to hide and protect themselves in the event of an emergency. The controlled hiding space should be lockable and readily accessible. A controlled hiding space could be a classroom or some other designated area within the building.
  5. Design interior hallways and adjacent spaces to provide situational awareness of hallway conditions from these rooms, but also provide means to eliminate vision into these rooms as activated by room occupants.

Classroom Security

  1. All classrooms shall be equipped with a communications system to alert administrators in case of emergency. Such communication systems may consist of a push-to-talk button system, an identifiable telephone system, or other means.
  2. Door hardware, handles, locks and thresholds shall be ANSI/BHMA Grade 1.
  3. All classroom doors shall be lockable from the inside without requiring lock activation from the hallway, and door locks shall be tamper resistant.
  4. Classroom door locks shall be easy to lock and allow for quick release in the event of an emergency.
  5. Classroom doors with interior locks shall have the capability of being unlocked/ released from the interior with one motion.
  6. All door locking systems must comply with life safety and state building and fire codes to allow emergency evacuation.
  7. Provide doors between adjacent classrooms to provide means of moving classroom occupants from one classroom to the next as a means to relocate students and teachers from an impending hallway threat. Provide such doors with suitable locking hardware to preclude unauthorized tailgating.
  8. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.
  9. If classroom doors are equipped with a sidelight, the glazing should be penetration/forced entry resistant to the project forced entry standard.
  10. If interior windows are installed to provide lines of sight into/out of classrooms or other populated areas, certain factors should be taken into consideration relating to the size, placement and material used for those windows, including:
  11. Minimizing the size of windows or the installation of multiple interspersed smaller windows with barriers in a larger window area to deter intruder accessibility.
  12. Placing windows at a sufficient distance from the interior locking mechanism to prevent or make difficult the opening of a door or lock from outside.
  13. Concealing or obstructing window views to prevent an assailant‘s ability to ascertain the status or presence of persons inside of a classroom during lockdown.
  14. Hardening window frames and glazing to the project forced entry standards to lessen window vulnerability.

Large Assembly Areas (gym, auditorium, cafeteria, or other areas of large assembly)

  1. Points of entrance and egress shall be clearly demarcated and designed to meet the project forced entry standards.
  2. Lighting shall be sufficient to illuminate potential areas of concealment, enhance natural and/or electronic surveillance, discourage vandalism and protect against vandalism.
  3. Electronic surveillance should be used in large assembly areas and at all exit doors to securely monitor those areas when natural surveillance is not available.

Shared Space or Mixed Occupancy (library, BOE, mixed use or other community service)

  1. Shared space shall have separate, secure and controllable entrances.
  2. The design of shared space should prevent unauthorized access to the rest of the school.
  3. The design of shared space shall allow for the monitoring of points of entry/egress by natural and/or electronic surveillance during normal hours of operation.

Roofs

  1. The design shall allow for roof accessibility to authorized personnel only.
  2. Access to the roof should be internal to the building. Roof access hatches shall be locked from the inside.
  3. If external access exists, roof ladders should be removable, retractable, or lockable. Screen walls around equipment or service yards should not provide easy access to the roof or upper windows.
  4. Provide adequate lighting and controls for roof access means and roof access points into the school.

Critical Assets/Utilities

  1. Screens at utilities, such as transformers, gas meters, generators, trash dumpsters, or other equipment shall be designed to minimize concealment opportunities and adequate to preclude unauthorized access. Installation of screens at utilities shall be compliant with utility company requirements.
  2. Access to building operations systems shall be restricted to designated users with locks, keys and/or electronic access controls. Secure all mechanical rooms with intruder detection sensors.
  3. Loading docks shall be designed to keep vehicles from driving into or parking under the facility.
  4. Spaces with critical systems shall be provided appropriate graphics to be recognizable to emergency responders.
  5. Gas meter/regulator rooms shall be provided with forced entry resistant doors and to the project standards.
  6. Gas leak detection systems/sensors shall be installed wherever gas metering or appliances are installed.
  7. Shipping and receiving areas shall be separated from all utility rooms by at least fifty (50) feet unless prohibited by site constraints. If a site is determined to be physically constrained from reasonably meeting the fifty (50) foot separation requirement, maximize the separation distance between the receiving area and the utility room to the greatest extent possible. Utility rooms and service areas include electrical, telephone, data, fire alarm, fire suppression rooms, and mechanical rooms.
  8. Critical building components should be located away from vulnerable areas. Critical building components may include, but are not limited to:
    1. Emergency generator;
    2. Normal fuel storage;
    3. Main switchgear;
    4. Telephone distribution;
    5. Fire pumps;
    6. Building control centers;
    7. Main ventilation systems if critical to building operation.
    8. Elevator machinery and controls.
    9. Shafts for stairs, elevators, and utilities.

Security Infrastructure and Design Strategies

  1. The design shall include special rooms for hazardous supplies that can be locked.
  2. The design shall include secured spaces, closets, cabinets or means of protection to minimize the use of dangerous objects from shop, cooking or other similar occupancies.
  3. Egress stairwells should be located remotely and should not discharge into lobbies, parking or loading areas.
  4. Trash receptacles, dumpsters, mailboxes and other large containers shall be kept at least thirty (30) feet from the building unless prohibited by site constraints. If a site is determined to be physically constrained from reasonably meeting the thirty (30) foot separation requirement, maximize the separation distance to the greatest extent possible.

(Source: Final Report Of The Sandy Hook Advisory Commission)

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


What Can Architects Do To Design Safer Classrooms For Our Children? Part 3 Actions We Can Take To Promote Safe And Successful Schools

 ILMA Classroom 05.png

Photo Source: S&S Worldwide

Policies and funding that support comprehensive school safety and mental health efforts are critical to ensuring universal and long-term sustainability. However, school leaders can work toward more effective approaches now by taking the following actions:

  1. Work with School Leadership to promote, develop and establish a “Safety Team” that includes key personnel: principals, teachers, school-employed mental health professionals, instruction/curriculum professionals, school resource/safety officer, and a staff member skilled in data collection and analysis.
  2. Work with the school’s “Safety Team” assess and identify needs, strengths, and gaps in existing services and supports (e.g., availability of school and community resources, unmet student mental health needs) that address the physical and psychological safety of the school community.
  3. Assist with the evaluation of the safety of the school building and school grounds by examining the physical security features of the campus.
  4. Safety Team should review how current resources are being applied.
  5. Are school employed mental health professionals providing training to teachers and support staff regarding resiliency and risk factors?
  6. Do mental health staff participate in grade-level team meetings and provide ideas on how to effectively meet students’ needs?
  7. Is there redundancy in service delivery?
  8. Are multiple overlapping initiatives occurring in different parts of the school or being applied to different sets of students?
  9. Safety Team should implement an integrated approach that connects behavioral and mental health services and academic instruction and learning (e.g., are mental health interventions being integrated into an effective discipline or classroom management plan?).
  10. Safety Team should provide adequate time for staff planning and problem solving via regular team meetings and professional learning communities. Identify existing and potential community partners, develop memoranda of understanding to clarify roles and responsibilities, and assign appropriate school staff to guide these partnerships, such as school-employed mental health professionals and principals.
  11. Safety Team should provide professional development for school staff and community partners addressing school climate and safety, positive behavior, and crisis prevention, preparedness, and response.
  12. Safety Team should engage students and families as partners in developing and implementing policies and practices that create and maintain a safe school environment.
  13. As Architects we can assist the “Safety Team” by utilizing strategies developed by Crime prevention through environmental design(CPTED), a multi-disciplinary approach to deterring criminal behavior through environmental design. CPTED strategies rely upon the ability to influence offender decisions that precede criminal acts. Generally speaking, most implementations of CPTED occur solely within the urbanized, built environment. Specifically altering the physical design of the communities in which humans reside and congregate in order to deter criminal activity is the main goal of CPTED. CPTED principles of design affect elements of the built environment ranging from the small-scale (such as the strategic use of shrubbery and other vegetation) to the overarching, including building form of an entire urban neighborhood and the amount of opportunity for “eyes on the street”.

ILMA Classroom 06.png
Image Source: School Security – Threat and Vulnerability Assessments

Sources:

The National Association of School Psychologists (NASP)

The National Association of School Psychologists (NASP) School Violence Prevention

The National Association of School Psychologists (NASP) Framework For Safe Schools

ILMA Classroom 10.pngILMA Classroom 09.pngILMA Classroom 08ILMA Classroom 07

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 

 

 

 

 

 

 


Our Exclusive ILMA Interview with Matthew B. Jarmel, AIA, MBA of @JarmelKizel

Mr. Jarmel is an Architect, Real Estate Developer, Renewable Energy Enthusiast, Entrepreneur and Owner of Jarmel Kizel Architects and Engineers Inc.

He received a Bachelors of Architecture from NJIT in 1990 and an MBA from Rutgers University in 1994. He can be found online at the following social media sites: LinkedIn, Facebook and Twitter.

About the Firm

Since the firm’s founding in 1975, Jarmel Kizel has worked its way from the inside out; originally concentrating on the interior design of corporate offices and since has grown into a full-service Architectural, Engineering, and Interior Design firm that provides a single point of accountability for all aspects of design services. The firm’s size and abilities enable it to handle a broad spectrum of projects while allowing the principals to put their seal on every one. With in-house Civil, Structural, Mechanical, Electrical, Plumbing and Fire Protection Engineering, clients can look to Jarmel Kizel to have all aspects of their projects designed and managed by one firm.

Today the firm provides a unique service platform that provides a single point of accountability for architectural and engineering services formatted to assist clients with managing their project’s design needs from site design and land entitlements to building design through construction oversight.

ILMA INTERVIEW

When and why did you decide to become an Architect?     

I knew when I was in Junior High School that I wanted to become an architect.  I grew up in the industry in that my father is a commercial interior designer, he actually founded our firm in 1975, and I was exposed to design and construction at a very early age.  My dad totally remodeled our home and he had my brother Richard, who is a civil engineer and partner in our firm, and myself helping and working with tools. 

What were some of the challenges of achieving your dream?  

The architectural and engineering industry can be very rewarding.  There is tremendous emotional fulfillment to see your ideas first take shape on paper and then through construction.  I take great pride driving by a building our firm has designed and saying we did that.  Despite the rewards the business of architecture can be very difficult.  Our industry is first hit by a recession, hardest hit and usually the last to recover.   One of the greatest challenges of working in the profession is learning how to batten down the hatches and weather the economic storms when they come. 

Any memorable clients or project highlights?  

I have many projects I am proud of many clients that I respect and that have become good friends and even partners over the years.  Some of the more notable projects I have worked on include designing the Bear Stearns Campus in Whippany, NJ.  This project was developed over years and ultimately included approximately 700,000 sf of office and data center space in five buildings, two of which we designed and the rest we designed major renovations to.  Unfortunately Bear Stearns does not exist anymore but the campus is still there.  We also were fortunate to design the first major redevelopment project in Plainfield, NJ where we designed four buildings for the Union County Improvement Authority that included a 100,000 sf office building, two retail buildings totaling 40,000 sf and a parking structure.   This project acted as a catalyst for new development in the city.   Over the last several years the firm has been very active in NYC designing many mixed use large scale projects, we have a 17 story building under construction in Queens right now.   One of my most memorable clients is The Learning Experience.   The Learning Experience is a national and soon to be international brand of child development centers.  We designed their first center 16 years ago and have since completed over 200 projects throughout the country for them.  Because of the volume of projects we have completed for them, about 70 in NJ alone, I gained tremendous experience in land entitlements and have become an expert in land entitlement strategy.

How does your family support what you do?    

The creative process can be very time consuming, running a business and being creative magnifies the time required to be an architect.  Some days I leave the house at 7 and if I have a hearing don’t get home until midnight.   Other times I am hopping on an airplane and away overnight.   My family is supportive in that they understand the taxing requirements of the job.   With that said everything I do is for my family.  So I make sure my wife and children get the attention they need from me and we plan as much quality time as possible.

How do Architects measure success?     

Some might say you measure the success of an architect by the quality and aesthetic of the buildings he or she designs, or by how much wealth and fame they have obtained.  To me a successful architect you have to be a strong leader, a strong communicator and be able to balance the aesthetic and technical issues of a building’s design all while understanding the functional and economical goals of your client.  The architect that can achieve this can become successful.  Ultimately success is measured by obtaining the respect of your peers, clients and even contractors in the industry.  

What matters most to you in design?      

Achieving my clients goals of function and budget while creating a building that is safe and attractive.   

What do you hope to achieve over the next 2 years? 5 years?  

Our firm has developed strong skills in real estate development which include land entitlements and real estate economics.   Many times we set the strategy for how to present a project to planning and zoning boards, explain the process to our clients and even their attorneys, advise on PILOT and other incentives, building valuation and assist in making introduction to equity investors and lenders.   These skills make us stand out from our competitors but not necessarily obtain higher fees.  Our goal for the next 2 to 5 years is to expand our Real Estate Advisory services to create additional revenue as a “Fee Developer” and on our own development account.

Who is your favorite Architect? Why?     

I respect the design styles of many current and historic architects.  I am a big fan of the Chicago School and of those architects Louis Sullivan is probably my favorite.  I like this style for the buildings of the time were the first commercial buildings and first to break away from using ancient detailing by employing and emphasizing technology in design.

Do you have a coach or mentor?

I do not have a specific coach or mentor but I like to bounce ideas off of my team, clients and friends.  

What is your favorite historic and modern (contemporary) project? Why?  

My favorite historic building is the Roman Pantheon.  It was built around 113 AD and has the largest unreinforced concrete dome ever made which has a giant hole in the center that allows the sun and the moon to shine in along with the rain.  It still stands 2000 years later.  The Romans were great builders, they invented concrete, experimented with reinforcing concrete with brass chains and even developed zoning rules and regulations.   As far as contemporary buildings there are so many that I love.   I lean towards high rise sky scrapers

Where do you see the profession going over the next few decades?

Although new technologies are implemented in the profession and we go through these stages where we preach design build vs a separation between design and construction professionals the industry has not changed much in my career.  I find it interesting that Ayn Rand’s “The Fountainhead” which was written in the 40’s and takes place in the 20’s and uses the architectural industry as a back story to promoting her political views speaks to many of the same type of players and issues in the industry today.  There are developers, contractors, politicians and architects.  There are residential, public and commercial buildings and she even tackles issues such as affordable housing.  All the same issues we deal with today.   I do not see major changes in the business of the profession.  Although I do see major technical influences which will affect the way we design and build buildings.  There is a robot that lays brick now.  I think as the world gets smaller through technology building codes and licensing laws will become more standardized.

What type of technology do you see in the design and construction industries?

The use of BIM is becoming the most prevalent tool used in the design of buildings.  It allows architects and engineers to work in 3 dimensions, quickly and efficiently to improve coordination and actually see the building take shape on the screen.  Despite my comment about the brick laying robot above most construction is still done with heavy machinery and by hand.  However, technology has taken over the management of projects from creating schedules, to tracking financing and creating a database of information.  

Who / what has been your greatest influence in design?      

This answer may seem odd to most architects but my great influence in design arrives from an understanding of real estate economics tied to a building’s function and economics.   When a student at NJIT I took an elective in real estate development.  It was taught by a gentleman who ran the development arm of a now defunct savings and loan so we will allow him to remain nameless.  However, he was very influential in that he said he hated architects and found them to be a necessary evil in the process because the law forced them on him to use.  Obviously, this got most of the students in the class upset but I wanted to know why he felt that way.  He thought that architects only cared about what the building looked like and had no understanding or really care for what it might cost to build, what’s its function was to be or how it generated revenue for its owners.  He introduced me to the business side of why clients build in the first place.  This motivated me to go on and obtain an MBA with a concentration in real estate development and urban land use after architectural school.  I feel that the business education in conjunction with my architectural education make me a stronger architect and have been the most influential on my design.

Which building or project type would you like to work on that you haven’t been part of yet?     

I have been fortunate to work on almost any type of commercial project.  I would like to be exposed to more hospitality projects.

How do you hope to inspire / mentor the next generation of Architects?   

I hope to mentor the next generation of architects in a way that they can understand the business goals of the client and why they are building so that they can better respond to the client’s needs I also want to mentor them to be strong leaders and great communicators.

What advice would you give aspiring architects (K-12)? College students? Graduates?

I would advise them to not only pursue their dream of designing buildings but to learn about the profession as a whole, to learn about the process of becoming an architect and career choices in the industry.  When I was in school no one told me how to become a licensed architect I had to figure it out on my own.

What does Architecture mean to you?     

It is my profession, it is my life!

What is your design process?     

First understand the client’s program goals and budget, then study the site and zoning constraints, roll up my sleeves and dive in.

If you could not be an Architect, what would you be?     

A civil engineer and or real estate developer.

What is your dream project?     

A really tall building in a major city that becomes a landmark for years to come.  If I can be a partner in its ownership even better.

What advice do you have for a future Executive leader?     

Respect and care about the people you are leading, be kind but stern.

What are three key challenges you face as a leader in business today and one trend you see in your industry?     

All challenges revolve around people.  First finding qualified people, there is a tremendous shortage of qualified architects and engineers, second finding people that can see the big picture first before the crawl into the details and finally finding people that can communicate effectively.   As far as trends see my answer to where I see the industry going above

What one thing must an executive leader be able to do to be successful in the next 3 years?      

I am optimistic that we are at the beginning of a sustainable economic growth period.  This will provide many of us with significant projects to choose from and an even more challenging labor shortage.  An executive leader will need to be able to recruit talent and keep them motivated to stay.

What are some executive insights you have gained since you have been sitting in the executive leadership seat – or what is one surprise you have encountered as the world of business continues to morph as we speak?     

I do not know if I am any smarter today at 50 then I was when I got out of school in my early 20’s what I have gained is life experience.  The most important lesson is that people will surprise you. Some will impress you, some will disappoint you, some will be loyal and others not.  I have seen some crazy things happen some good and some bad.   Just when I think I have seen everything someone surprises me. 

Final Thoughts on How to Be Successful?      

Learn your trade, be good at and then learn to be a good communication and leader and business person.

For more exclusive ILMA interviews click here.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

Gift Ideas from ILMA