Architect’s Follow Up on the Cathedral of Notre-Dame de Paris and Creating Safer Work Environments #UnderConstruction #Safety #Design #Architecture #LessonsLearned #SafetyFirst #Design #Build #Architect #ilmaBlog

Follow Up on the Cathedral of Notre-Dame de Paris and Creating Safer Work Environments

A few weeks ago on April 15th, 2019, a fire destroyed the roof and wooden spire of the Notre-Dame de Paris.

One of the most famous timber frame fires started just after midnight on the 2nd September 1666 in Pudding Lane. After burning for three days it destroyed nearly 90 percent of the inhabitants of London’s homes.

Getty Images

Possible Causes For Blaze

Although officials say that the investigation could last several weeks and nothing can be ruled out at this time, there is much suspicion that the blaze may have been started by a short-circuit near the spire.

The short circuit may have been possibly caused by electrified bells, or negligence by construction workers carrying out the ongoing renovations, a theory fueled by the discovery of cigarette butts.

Typical Sources of Ignition

Not related to the fire, but for a matter of reference, sources of ignition during construction may generally include: (1) Hot works – cutting, grinding, soldering, hot pitching; (2) Faulty electrical equipment – damaged sockets and equipment, service strikes, temporary supplies and halogen lighting; (3) Arson – works in high crime rate areas, protests and objections to the scheme, disgruntled employees or contractors; (4) Reactive chemicals; (5) Fire Loading; (6) Fire Spread – The Offsite Risks; (7) and Constrained sites.   It will be interesting to see what the investigators are able to uncover in the following weeks.

André Finot, the cathedral’s spokesman, pointed out traces of damage. “Everywhere the stone is eroded, and the more the wind blows, the more all of these little pieces keep falling,” he said. (Photo Credit: Dmitry Kostyukov for The New York Times)

Ongoing Renovations

Fallen stones on the cathedral’s roof. Experts say that the building has reached a tipping point and that routine maintenance is no longer enough to prevent rain, wind and pollution from causing lasting damage. (Photo Credit: Dmitry Kostyukov for The New York Times)
Masonry that has broken away or that was taken down as a precautionary measure has been piled up on a small lawn at the back of the cathedral. (Photo Credit: Dmitry Kostyukov for The New York Times)

According to the New York Times, the biggest renovation at the cathedral took place between 1844 and 1864 when the spire and the flying buttresses were rebuilt.  The most recent overhaul, however, was meant to be understated. “The idea isn’t to replace every single stone. I don’t want to give this cathedral a face-lift,” said Philippe Villeneuve, the chief architect behind the project.  The renovations, which are estimated to cost $150 million euro ($169 million) were still ongoing when the cathedral caught fire.  Most likely something to do with the renovations of the cathedral led to its temporary demise.

Design Input

The event, which occurred during holy week sparked an intense national debate on how the 856-year-old cathedral should be rebuilt.  The French public will get a say on how the fire-ravaged Notre Dame cathedral will be rebuilt, officials say. 

FYI: In a separate blog post, ILMA plans to do a write up on the current designs that are being suggested by Architects and designers around the world.

Construction Workers – Risk Management

As a matter of course, this heartbreaking occurrence give us pause to consider the threats that can occur during construction.  Some risks to workers that need to be managed during construction and renovations include the following: (1) Working at Height; (2) Slips, Trips and Falls; (3) Moving Objects; (4) Noise; (5) Manual Handling; (6) Vibrations; (7) Collapses; (8) Asbestos; (9) Electricity; (9) Respiratory diseases. (Sources: Top 10 construction health and safety risks) and OSHA’s Top Four Construction Hazards); From the perspective of keeping the building safe during renovations and/or construction and saving lives, the following should be considered:

Building Safety – Risk Management

  1. Installation of sprinkler systems and fire detection systems early on in construction
  2. Availability of standpipes
  3. Commissioning the sprinkler system
  4. Access to fire extinguishers
  5. Make sure your fire detection and warning systems work
  6. Maintaining means of egress; Building compartmentation and protected fire routes in as the building is constructed
  7. Protect emergency escape routes
  8. Secure the site against arson
  9. Protect temporary buildings and accommodation
  10. Store equipment safely
  11. Design out hot works
  12. Keep the site tidy
  13. Keep project site and equipment safe
  14. No smoking
  15. Increase security for the site – CCTV, Full height hoarding, signage
  16. Engagement of local fire departments – to assess water pressure and accessibility
  17. Proper fire risk assessment that considers fire loading and fire separation distances

Learning From the Tragedy of the Cathedral of Notre-Dame de Paris

As timber is becoming increasingly more popular in high rises it is important to consider the past when managing the risks of projects utilizing wood framing.  Although there are many studies and test on modern day timber/wood designs, it is still important to consider the risks that are present on any jobsite.  Spending the money to do construction the right way will help reduce the inherent risks with construction – both to safeguard people as well as the buildings that we cherish.

For more information on my take on what happened at Notre Dame, please consider checking out the original articles: Personal Reflection on the Tragedy of April 15, 2019 at Notre Dame Cathedral in Paris and What Makes Notre Dame Cathedral So Important as a Work of Architecture?.

Additional Reading:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Bring Your Children to Work Day at @MontclairStateU #ArchWeek19 #CitizenArchitect #BlueprintForBetter #ilmaBlog #Architecture #UniversityArchitect

Brief Announcement
On April 25th, Frank Cunha III & Michael Chiappa participated in a Bring Your Children to Work Day at MSU where we were able to teach the children about architecture, planning, design and construction. We showed them the old ways, the current ways and the future ways that architects envision projects and help build the world around us.

About Bring Your Children to Work Day
National Take Our Daughters and Sons to Work Day is recognized on the fourth Thursday in April each year. This annual event is an educational program in the United States and Canada where parents take their children to work with them for one day.

Presentation
The following is the slideshow we presented to the children:

About the Event
This year some of the parents decided to focus on STEM and what it means to be an Architect….a profession that is both creative and artistic, yet methodical and scientific. We explored what it means to be an Architect and other STEM fields and how anyone, regardless of gender, race, religion or ethnicity can aspire to do great things. Architecture is just one of many pathways where we can lead through change and technology. We looked at old blue prints, 3-D modeling, 3-D printing, building materials, using our original 1908 building (College Hall) for context in describing the process and all of the wonderful people that it takes to conceive of a project — We looked at interior design and site design as part of the overall architectural design of a campus. We emphasized, that although not all the children will decide to become architects, it is important to understand what architects do and how to understand how we think and how/what we do. We all need to learn from each other and work as a team to get things done. It was exciting to see the children work with the campus hand on when we had them work on an interactive puzzle of the campus. One of the students said: ” The campus is like a small city.” It was really fulfilling to see that she understood that the university is like a small city. It felt great to make an impact and promote architecture to young children.

Coincidentally, Architecture Week is held every April as part of the American Institute of Architects (AIA) nationwide celebration of our built environment, so that made the day even more special to me.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


New Campus Center at Springfield Technical Community College #UniversityArchitect #Rehabilitation #Community #College #Architecture #Transformation #ilmaBlog

All Photos: Chuck Choi

Combining historic preservation, adaptive reuse, and contemporary architecture, Springfield Technical Community College’s new Campus Center repurposes a 764-foot-long by 55-foot-wide warehouse building originally constructed between 1846 and 1864.

A major aspect of the Springfield, Massachusetts, University’s Campus Center is The Ira H. Rubenzahl Student Learning Commons. The Campus Center and Student Learning Commons consolidate academic services and student life activities under one roof. Corten steel canopies along the building’s facade distinguish new entrances into each hub.

Click Here to read the rest of the story.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Personal Reflection on the Tragedy of April 15, 2019 at Notre Dame Cathedral in Paris, France #Paris #Fire #NotreDame #Reflection #Architecture #CarpeDiem

Reflection on the Tragedy of April 15, 2019

This week is Holy Week, when millions of Western Christians mark the death and resurrection of Jesus. Under normal circumstances, Notre Dame cathedral in Paris would have been preparing to display its holy relics to the faithful on Good Friday.

But as fire engulfed the sacred site on April 15, 2019, Catholics across the world reacted in horror and disbelief, particularly when the cathedral’s iconic spire toppled amid the flames.

For generations, Notre Dame Cathedral has been a place of pilgrimage and prayer, and, even as religion in France has declined for decades, it remained the beating heart of French Catholicism, open every day for Mass.

Source: CNN

REFLECTION

When something that is tragic like the Notre Dame Cathedral fire occurs, it is important to take time to reflect on what happened.  First, I look at this tragedy as a Christian, then as the grandson of European immigrants, and finally as an Architect.  I reflect on these recent events using three distinct but entwined lenses:

  • As a Christian, I reflect on what it means to be Christian.  Although imperfect, we are all put on Earth to accomplish great things.  Some have more than others, but we all have our crosses to bear.  As Easter approaches, for many Christians around the world who celebrate this holiest of days it is a time of reflection and hope of things to come.  As Jesus said, you are not of this world (we belong to Him).  When these events happen it also makes us aware of our fleeting earthly lives.
  • As a grandson of Europeans, I feel a strong camaraderie with my neighbors in France.  As technology helps the world shrink we are becoming global citizens.  But as someone who has spent many summers and taken many trips to Europe (probably more than 30 trips over my four decades), I feel a strong connection to what happens in Europe.  I have the same feeling in my stomach that I had when 9-11 happened in New York City.  We take for granted that these beautiful structures will always be here with us.  These events remind us that we must cross off trips that are on our bucket lists sooner rather than later.
  • As an Architect, my primary objective is to safeguard the public.  Sure, I love great design and inspiring spaces as much as the next designer.  However, being an Architect means that we must put safety above all else.  When these events occur, I cannot help but think how vulnerable we are.  As Architects we are always trying to evoke safety and security into our projects – Many times decisions are made with money more than risk aversion.  A 100% safeguard world is not possible, but I challenge my fellow Architects to consider ways that we can educate and confront our clients to ensure that all our buildings are safe.  We are all human with earthly perspectives and we are all bound to mistakes as we manage economics with safety.  Take for example, the Seton Hall student housing fires that changed safety for campus of higher educations around the country.  Can this tragedy bring some good? Perhaps as leaders in our industry we can shape the safety and preservation of our landmarks and new building projects to ensure the safety of the occupants.

Churches, castles and forts are the primary reason I chose this profession. Whenever we lose a structure of significance it is like losing a loved one. Like life itself, our art and architecture must be cherished because it is all temporary after all. Carpe Diem.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Makes Notre Dame Cathedral So Important as a Work of Architecture? #NotreDame #Architecture #Design #History

Notre Dame Cathedral is a medieval Catholic cathedral on the Île de la Cité located in Paris, France. The cathedral is considered to be one of the finest examples of Gothic architecture. The innovative use of the rib vault and flying buttress, the enormous and colorful rose windows, gothic arched windows and doorways, and the naturalism and abundance of its sculptural decoration all set it apart from earlier Romanesque architecture.

Notre Dame Cathedral is considered to be of the most well-known church buildings in the world. Construction started in 1163 and finished in 1345. It is devoted to Virgin Mary and it is one of the most popular monuments in Paris. The cathedral underwent many changes and restorations throughout time.

The location of this cathedral has a long history of religious cult. The Celts celebrated rituals there before the Romans erected a temple devoted to Jupiter. It was also the place were the first Christian church, Saint Étienne, was built. It was founded by Childeberto I in 528 AD. In 1160 the church was deemed and in 1163 the construction of the cathedral started. Opinions differ as to whether Sully or Pope Alexander III laid the foundation stones of the cathedral. Several architects took part in the construction, so differences in style are clearly seen.

There are around 13 million people who visit the Notre Dame de Paris Cathedral every year, which means this is an average of 30,000 people every day, growing to around 50,000 pilgrims and visitors who enter the cathedral on peak days.

History

Construction began in 1163 after Pope Alexander III laid the cornerstone for the new cathedral. By the time of Bishop Maurice de Sully’s death in 1196, the apse, choir and the new High Altar were all finished, while the nave itself was nearing completion. In 1200, work began on the western facade, including the west rose window and the towers, all of which were completed around 1250, along with a new north rose window. Also during the 1250s, the transepts were remodeled in the latest style of Rayonnant Gothic architecture by architects Jean de Chelles and Pierre de Montreuil, and the clerestory windows were enlarged. The last remaining elements were gradually completed during the following century.

The Cathedral of Notre-Dame de Paris was built on a site which in Roman Lutetia is believed to have been occupied by a pagan temple, and then by a Romanesque church, the Basilica of Saint Étienne, built between the 4th century and 7th century.

Notre-Dame Cathedral suffered damage and deterioration through the centuries, and after the French Revolution it was rescued from possible destruction by Napoleon, who crowned himself emperor of the French in the cathedral in 1804. Notre-Dame underwent major restorations by the French architect E.-E. Viollet-le-Duc in the mid-19th century. The cathedral is the setting for Victor Hugo’s historical novel Notre-Dame de Paris (1831).

Gothic Cathedral Builders

With the aid of only elementary drawings and templates, master stone masons meticulously directed the construction of the great medieval cathedrals of Europe. The practices of intuitive calculation, largely based on simple mathematical ratios and structural precedent, were closely guarded and passed between successive generations of masons. Specific site conditions and the insatiable demand by church authorities for higher and lighter buildings provided the impetus for continual development.

The Spire

Symbolically, spires have two functions. Traditionally, one has been to proclaim a martial power of religion. A spire, with its reminiscence of the spear point, gives the impression of strength. The second is to reach up toward the skies. The celestial and hopeful gesture of the spire is one reason for its association with religious buildings.

Holy Christian Relics

The Relics of Sainte-Chapelle are relics of Jesus Christ acquired by the French monarchy in the Middle Ages and now conserved by the Archdiocese of Paris. They were originally housed at Sainte-Chapelle in Paris and are now in the cathedral treasury of Notre Dame de Paris.  Relics believed to be a piece of the cross on which Jesus was crucified, as well as the Crown of Thorns he wore, have been kept at the cathedral for centuries. The braided circle held together by golden thread has about 70 or so thorns attached. The relics were obtained from the Byzantine Empire in 1238 and brought to Paris by King Louis IX.

Wood Construction

The framing of Notre-Dame de Paris is certainly one of the oldest structures in Paris with that of Saint-Pierre de Montmartre (1147).

It is poetically and endearingly called the Forest because of the large number of wood beams that had to be used to set it up.  Each beam coming from a different tree. It is a framework of oaks. Its measurements are very impressive: More than 328 feet (100 meters) long, 43  feet (13 meters) wide in the nave, 130 feet (40 meters) in the transept and 33 feet (10 meters) high.

In the choir, there existed a first frame with woods felled around 1160-1170 (it is estimated that some could have 300 to 400 years, which brings us to the 8th or 9th centuries !!!). This first frame has disappeared, but woods were reused in the second frame installation in 1220.

In the nave, the carpentry is set up between 1220 and 1240.  The work of the nave began between 1175 and 1182, after the consecration of the choir. The work stops after the fourth bay leaving the nave unfinished while the elevation of the facade is begun in 1208. The work of the nave will be resumed in 1218 to counter the façade.

On this frame rests a lead roof consisting of 1326 tables 0.20 inches (5 mm) thick weighing 210 tons . In the eleventh and twelfth centuries, roofs were covered with flat tile churches because of the abundant clay deposits. Paris, being far from such deposits, was preferred to lead. In 1196, Bishop Maurice de Sully bequeathed 5,000 pounds for the purchase of lead.

Although the carvings of the choir and the nave went through the centuries, those of the transepts and the spire were redone in the middle of the 19th century during the great restoration campaign of the cathedral under the direction of The Duke . Made according to the principles then in force, they differ from the framework of the choir and the nave, in particular as regards the dimensions of the beams which are much more imposing than those of the Middle Ages and more distant.

The Facade

Notre Dame’s iconic facade evokes a harmony of design based on nature and represents a level of detailed craftsmanship that no longer subsists in contemporaneous architecture. From Georges-Eugène Haussmann’s immense plaza the visitor is captivated by a stunning view of the facade’s three elaborately-decorated portals.

The left-side portal of the Virgin depicts the life of the Virgin Mary, as well as a coronation scene and an astrological calendar. The central portal depicts the Last Judgement in a kind of vertical triptych. The first and second panels show the resurrection of the dead, the judgment, Christ, and apostles.The pièce de résistance is the reigning Christ which crowns the scene.

The portal of Saint-Anne on the right features Notre Dame’s oldest and finest surviving statuary (12th century) and depicts the Virgin Mary sitting on a throne, the Christ child in her arms. Above the portals is the gallery of kings, a series of 28 statues of the kings of Israel.

The magnificent exterior of Notre Dame’s West rose window depicts the biblical figures of Adam and Eve on the outer rim. It measures an impressive 33 feet (10 meters) in diameter, which was the largest rose window constructed in its day.

The final level of the facade before reaching the towers is the “Grande Galerie” which connects the two towers at their bases. Fierce demons and birds decorate the grand gallery but are not easily visible from the ground.

The Cathedral Towers

Notre Dame’s ornate towers became a legend thanks to 19th-century novelist Victor Hugo, who invented a hunchback named Quasimodo and had him inhabit the South tower in “The Hunchback of Notre Dame”.

The towers are 223 feet (68 meters) tall offering remarkable views of the Ile de la Cité, the Seine River and the entire city itself.  After climbing 400 stairs you are rewarded with gargoyles of grimacing demons and menacing carrion birds. The South tower houses Notre Dame’s infamous 13-ton bell.

You can also admire the detail of Notre Dame’s magnificent spire, destroyed during the revolution and restored by Viollet-le-Duc.

The Magnificent Interior

Medieval architects represented their idea of human earthliness in relation to heaven through structures that were at once grandiose and ethereal–and Notre Dame’s interior achieves exactly this. The cathedral’s long halls, vaulted ceilings, and soft light filtered through intricate stained glass help us understand the medieval perspective of humanity and divinity. There is no access to the cathedral’s upper levels, obliging visitors to remain earthbound, gazing upward. The experience is breathtaking, especially on a first visit.

The cathedral’s three stained-glass rose windows are the interior’s outstanding feature. Two are found in the transept: the North rose window dates to the 13th century and is widely considered to be the most stunning. It depicts Old Testament figures surrounding the Virgin Mary. The South rose window, meanwhile, depicts the Christ surrounded by saints and angels. More modern stained glass, dating to as late as 1965, is also visible around the cathedral.

Notre Dame’s organs were restored in the 1990’s and are among the largest in France.

The choir includes a 14th-century screen which portrays the biblical Last Supper. A statue of the Virgin and Christ child, as well as funeral monuments to religious figures, are also found here.

Near the rear, Notre Dame’s treasury includes precious objects, such as crosses and crowns, made of gold and other materials.

Countless processions and historical moments took place inside the cathedral, including the crowning of Henry VI, Mary Stuart, and Emperor Napoleon I.

Sources:

http://www.notredamedeparis.fr/en/la-cathedrale/architecture/la-charpente

https://www.tripsavvy.com/notre-dame-cathedral-highlights-and-facts-1618863

https://en.wikipedia.org/wiki/Haussmann%27s_renovation_of_Paris

https://en.wikipedia.org/wiki/Notre-Dame_de_Paris

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


12 Rules For Architects Using Aspire Project Management Techniques #ilmaBlog #PM #Management #Business #Architecture

  1. Customer Satisfaction: Our highest priority is to satisfy the customer through early and continuous delivery of valuable design solutions.Embrace Changes: Welcome changing requirements, even late in development. Agile processes harness change for the customer’s competitive advantage.
  2. Embrace the Process: Deliver working design solutions frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
  3. Embrace Teamwork: The design team must work together daily throughout the project.
  4. Support Enthusiasm: Design projects around motivated individuals. Give them the environment and support they need and trust them to get the job done.
  5. Face-to-Face is First: The most efficient and effective method of conveying information to and within a design team is face-to-face conversation.
  6. How Do We Measure Progress: Effective, efficient and elegant design solutions are the primary measure of progress.
  7. Less Is More: Simplicity — the art of maximizing leaving stuff out — is essential. Agile processes promote sustainable development.
  8. Allow for Flexibility: The best design solutions emerge from self-organizing design teams.
  9. Execute, Monitor, Adjust: At regular intervals, the design team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.
  10. God Is In The Details: Continuous attention to technical excellence and good design enhances agility.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The Architect’s Role in Sustainable Design (and How to Use Technology & Innovation to Advance Our Green Agenda) #ilmaBlog #green #design #architecture

Background

In the design and construction field, there are two major categories of resources: renewable and non-renewable. As opposed to non-renewable resources, which are depleted with their constant use, renewable resources are not. If not managed properly Non-renewable resources might become non-existent when the rate at which they are used is much higher than the rate at which they are replaced. Renewable resources include water, geothermal energy and wind energy. Non-renewable resources include coal, natural gas and oil.  The demand for new construction is on the rise as the world’s population increases and the demand for newer, more efficient modern buildings also increase.

Architect’s Role

Because buildings account for so much energy to build and maintain, architects and designers have become very conscious about our role in minimizing our environmental footprint when we design buildings.  The American Institute of Architects, the largest organization of architects world-wide has a committee called the Committee on the Environment (COTE), which works to advance, disseminate, and advocate—to the profession, the building industry, the academy, and the public—design practices that integrate built and natural systems and enhance both the design quality and environmental performance of the built environment. COTE serves as the community and voice on behalf of AIA architects regarding sustainable design and building science and performance.

Bamboo

Renewable Resources

In green construction processes, there is an emphasis on the use of renewable resources. In many cases, this natural source becomes depleted much faster than it is able to replenish itself, therefore, it has become important that buildings make use of alternative water sources for heating, hot water and sewerage disposal throughout their life cycles, to reduce use and conserve water supplies.

Architects and designers specify rapidly renewable materials are those that regenerate more quickly than their level of demand. Our goal is to reduce the use and depletion of finite raw materials and long-cycle renewable materials by replacing them with rapidly renewable ones.  Some commonly specified rapidly renewable materials include cork, bamboo, cotton batt insulation, linoleum flooring, sunflower seed board panels, wheat-board cabinetry, wool carpeting, cork flooring, bio-based paints, geotextile fabrics such as coir and jute, soy-based insulation and form-release agent and straw bales. Some green building materials products are made of a merger of rapidly renewable materials and recycled content such as newsprint, cotton, soy-based materials, seed husks, etc.

Check out this ILMA article about “Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design” for more information on this topic.

Responsibility of Architects

Architects and designers who align with AIA’s COTE objectives, (1) recognize the value of their role in environmental leadership to advance the importance of sustainable design to the general public while incorporating sustainable design into their daily practice, (2) influence the direction of architectural education to place more emphasis on ecological literacy, sustainable design and building science, (3) communicate the AIA’s environmental and energy-related concerns to the public and private sectors and influence the decisions of the public, professionals, clients, and public officials on the impact of their environmental and energy-related decisions, (4) educate other architects on regulatory, performance, technical and building science issues and how those issues influence architecture, (5) educate the architectural profession on programming, designing, and managing building performance, (6) investigate and disseminate information regarding building performance best practices, criteria, measurement methods, planning tools, occupant-comfort, heat/air/moisture interfaces between the interior and exterior of buildings, (7) promote a more integrated practice in order to achieve environmentally and economically efficient buildings. One of the tools we will plan to promote to achieve this integration is Building Information Technology (BIM).

Smart-Building

The Role of Technology & Innovation – A Case Study (“The Edge”)

PLP Architecture and the Developer OVG Real Estate, built “The Edge” is a 430,556 SF (40,000m²) office building in the Zuidas business district in Amsterdam. It was designed for the global financial firm and main tenant, Deloitte. The project aimed to consolidate Deloitte’s employees from multiple buildings throughout the city into a single environment, and to create a ‘smart building’ to act as a catalyst for Deloitte’s transition into the digital age.

They key features of this building include the following innovations which address the environmental impact of building such a large edifice:

  • Each facade is uniquely detailed according to its orientation and purpose.
    • Load bearing walls to the south, east and west have smaller openings to provide thermal mass and shading, and solid openable panels for ventilation.
    • Louvers on the south facades are designed according to sun angles and provide additional shading for the office spaces, reducing solar heat gain.
    • Solar panels on the south facade provide enough sustainable electricity to power all smartphones, laptops and electric cars.
    • The North facades are highly transparent and use thicker glass to dampen noise from the motorway.
    • The Atrium façade is totally transparent, allowing views out over the dyke, and steady north light in.
  • The building’s Ethernet-powered LED lighting system is integrated with 30,000 sensors to continuously measure occupancy, movement, lighting levels, humidity and temperature, allowing it to automatically adjust energy use.
  • 65,000 SF of solar panels are located on the facades and roof, and remotely on the roofs of buildings of the University of Amsterdam – thereby making use of neighborhood level energy sourcing.
  • The atrium acts as a buffer between the workspace and the external environment. Excess ventilation air from the offices is used again to air condition the atrium space. The air is then ventilated back out through the top of the atrium where it passes through a heat exchanger to make use of any warmth.
  • Rain water is collected on the roof and used to flush toilets and irrigate the green terraces in the atrium and other garden areas surrounding the building.
  • Two thermal energy wells reach down to an aquifer, allowing thermal energy differentials to be stored deep underground.
  • In The Edge a new LED-lighting system has been co-developed with Philips. The Light over Ethernet (LoE) LED system is powered by Ethernet and 100% IP based. This makes the system (i.e. each luminaire individually) computer controllable, so that changes can be implemented quickly and easily without opening suspended ceilings. The luminaires are furthermore equipped with Philips’ ‘coded-light’ system allowing for a highly precise localization via smartphone down to 8 inches (20 cm) accuracy, much more precise than known WiFi or beacon systems.
  • Around 6,000 of these luminaires were placed in The Edge with every second luminaire being equipped with an additional multi-sensor to detect movement, light, infrared and temperature.
  • The Philips LoE LED system was used in all office spaces to reduce the energy requirement by around 50% compared to conventional TL-5 Lighting. Via the LoE system daily building use can be monitored. This data is fed to facility managers via the BMS allowing:
    • Remote insight into the presence of people in the building (anonymous). Heating, cooling, fresh air and lighting are fully IoT (Internet of Things) integrated and BMS controlled per 200 sqft based on occupancy – with zero occupancy there is next-to-zero energy use.
    • Predictions of occupancy at lunchtime based on real time historical data and traffic and weather information to avoid food-waste.
    • Unused rooms to be skipped for cleaning.
    • Managers to be alerted to lights that need replacing.
    • Notification of printers needing paper.
  • Every employee is connected to the building via an app on their smartphone. Using the app they can find parking spaces, free desks or other colleagues, report issues to the facilities team, or even navigate within the building.
  • Employees can customize the temperature and light levels anywhere they choose to work in the building via the mobile app. The app remembers how they like their coffee, and tracks their energy use so they’re aware of it.
  • The vast amount of data generated by the building’s digital systems and the mobile app on everything from energy use to working patterns, has huge potential for informing not only Deloitte’s own operations, but also our understanding of working environments as a whole. Discussions are currently ongoing regarding the future of this data and its use for research and knowledge transfer.
  • The green space that separates the building from the nearby motorway acts as an ecological corridor, allowing animals and insects cross the site safely.

Conclusion

Because buildings account for nearly 40 percent of global energy consumption, architects and designers have been working to impact the built environment in a positive way.  Although not every project can be as green as The Edge, by selecting materials that are renewable while reducing energy are two big contributions we can make to help ease the increasing demand for construction.

Technology can play a big part in our role to design more sustainable buildings through the use of building information modeling, energy management software, building management software, online sustainability calculators, energy modeling software, new lighting innovations, new techniques to capture and deliver energy and clean water while reducing waste, and mobile applications utilizing IoT.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook

 


History of Architecture

Jacqueline Gargus is a professor of architecture at the Knowlton School. Educated at Wellesley College and the University of Pennsylvania, she joined the Knowlton School faculty in 1988. She has also taught at the Harvard Graduate School of Design and has been a Senior Research Fellow at the Bauhaus Universität, Weimar, and the Technical University of Vienna. She is the author of Ideas of Order: A Formal Approach to Architecture (Kendall Hunt, 1994) and the multimedia digital video textbook, Architectural History 1, produced by iTunes University. Her most recent book is Architecture Guide: China (2016), co-authored with Evan Chakroff and Addison Godel.

Follow this link for access to over 40 youtube videos that take you from antiquity through mid-1800’s.

History of Architecture Youtube Playlist

If you just cannot get enough (like me) click here for another 100 episodes: iTunes History of Architecture Course

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What is the Thinking Hand in Architecture (and why we, as architects, must defend the natural slowness and diversity of experience) #ilmaBlog #Discourse #Theory #Architecture #Design

ILMA The Thinking Hand 01

2009 Book, The Thinking Hand written byArchitect Juhani Pallasmaa

In The Thinking Hand, Architect Juhani Pallasmaa reveals the miraculous potential of the human hand. He shows how the pencil in the hand of the artist or architect becomes the bridge between the imagining mind and the emerging image. The book surveys the multiple essences of the hand, its biological evolution and its role in the shaping of culture, highlighting how the hand–tool union and eye–hand–mind fusion are essential for dexterity and how ultimately the body and the senses play a crucial role in memory and creative work. Pallasmaa here continues the exploration begun in his classic work The Eyes of the Skin by further investigating the interplay of emotion and imagination, intelligence and making, theory and life, once again redefining the task of art and architecture through well-grounded human truths.

Pallasmaa notes that, “…architecture provides our most important existential icons by which we can understand both our culture and ourselves. Architecture is an art form of the eye, the hand, the head and the heart. The practice of architecture calls for the eye in the sense of requiring precise and perceptive observation. It requires the skills of the hand, which must be understood as an active instrument of processing ideas in the Heideggeran sense. As architecture is an art of constructing and physical making, its processes and origins are essential ingredients of its very expression…”

Linking art and architecture he continues, “…as today’s consumer, media and information culture increasingly manipulate the human mind through thematized environments, commercial conditioning and benumbing entertainment, art has the mission to defend the autonomy of individual experience and provide an existential ground for the human condition. One of the primary tasks of art is to safeguard the authenticity and independence of human experience.”

Pallasmaa asserts that,

“Confidence in future architecture must be based on the knowledge of its specific task; architects need to set themselves tasks that no one else knows how to imagine. Existential meanings of inhabiting space can be articulated by the art of architecture alone. Thus architecture continues to have a great human task in mediating between the world and ourselves and in providing a horizon of understanding in the human existential condition.

The task of architecture is to maintain the differentiation and hierarchical and qualitative articulation of existential space. Instead of participating in the process of further speeding up the experience of the world, architecture has to slow down experience, halt time, and defend the natural slowness and diversity of experience. Architecture must defend us against excessive exposure, noise and communication. Finally, the task of architecture is to maintain and defend silence. The duty of architecture and art is to survey ideals and new modes of perception and experience, and thus open up and widen the boundaries of our lived world.”

(Source: https://www.wiley.com/en-us/The+Thinking+Hand%3A+Existential+and+Embodied+Wisdom+in+Architecture-p-9780470779293)

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The History of Western Architecture in Photos

This slideshow requires JavaScript.

Happy Friday and enjoy the brief history lesson!

Prehistoric Times: Stonehenge in Amesbury, United Kingdom
Jason Hawkes/Getty Images

Ancient Egypt: The Pyramid of Khafre (Chephren) in Giza, Egypt
Lansbricae (Luis Leclere)/Getty Images (cropped)

Classical: The Pantheon, Rome
Werner Forman Archive/Heritage Images/Getty Images (cropped)

Byzantine: Church of Hagia Eirene, Istanbul, Turkey
Salvator Barki/Getty Images (cropped)

Romanesque: Basilica of St. Sernin, Toulouse, France
Anger O./AgenceImages courtesy Getty Images

Gothic: Notre Dame de Chartres, France
Alessandro Vannini/Getty Images (cropped)

Renaissance: Villa Rotonda (Villa Almerico-Capra), near Venice, Italy
Massimo Maria Canevarolo via Wikimedia Commons

Baroque: Palace of Versailles, France
Loop Images Tiara Anggamulia/Getty Images (cropped)

Rococo: Catherine Palace near Saint Petersburg, Russia
Sean Gallup/Getty Images

Neoclassicism: The U.S. Capitol in Washington, D.C.
Architect of the Capitol

Art Nouveau: Hôtel Lutetia, 1910, Paris, France
Justin Lorget/chesnot/Corbis via Getty Images

Beaux Arts: The Paris Opéra, Paris, France
Francisco Andrade/Getty Images (cropped)

Neo-Gothic: The 1924 Tribune Tower in Chicago
Glowimage/Getty Images (cropped)

Art Deco: The 1930 Chrysler Building in New York City
CreativeDream/Getty Images

Modernism: De La Warr Pavilion, 1935, Bexhill on Sea, East Sussex, U.K.
Peter Thompson Heritage Images/Getty Images

Postmodernism: Celebration Place, Celebration, Florida
Jackie Craven

Neo-Modernism and Parametricism: Heydar Aliyev Centre, 2012, Baku, Azerbaijan
Christopher Lee/Getty Images

Prehistoric to Parametric: Prehistoric Stonehenge (left) and Moshe Safdie’s 2011 Marina Bay Sands Resort in Singapore (right)
Left: Grant Faint / Right: photo by William Cho

(Source: Craven, Jackie. “Architecture Timeline – Western Influences on Building Design.” ThoughtCo, Apr. 21, 2018, thoughtco.com/architecture-timeline-historic-periods-styles-175996)

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


An Introduction to the Architecture of the Italian Renaissance By Classical Architect and Artist ‪@FTerryArchitect ‬#RIBA #Architecture #Education #ilmaBlog

Earlier this year UK-based Francis Terry MA (Cantab), Dip Arch, RIBA Director, gave his office a wonderful presentation I would like to share with my audience:

Francis is part of a new generation of classical architects who have recently gained a reputation for designing high quality works of architecture. Francis’s pursuit of architecture grew out of his passion for drawing and his love of historic buildings. He studied architecture at Cambridge University qualifying in 1994. While at Cambridge, he used his architectural skills to design numerous stage sets for various dramatic societies including The Footlights, The Cambridge Opera Society and The European Theatre Group.

Terry along with his colleague also talk about classical architecture in modern times at a recent TEDx Talk:

More Information available by clicking here. Not only does his website display great examples of classical architecture but he has a great blog with interesting writings and videos.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Understanding Classical Proportions in Architecture & Design #ILMA #ClassicalArchitecture #Design

662A391D-65D7-4ECA-9A3E-35D07140F9B4.jpegThe following is an easy to understand reference guide to understanding the basics of classical proportions:

Further reading:

  • Vitruvius: The Ten Books on Architecture by Vitruvius (Author), Herbert Langford Warren (Illustrator), Morris Hickey Morgan (Translator)
  • The American Vignola: A Guide to the Making of Classical Architecture by William R. Ware
  • The Five Books of Architecture by Sebastino Serlio
  • Canon of the Five Orders of Architecture by Giacomo Barozzi da Vignola (Author), John Leeke (Translator), David Watkin (Introduction)
  • The Four Books of Architecture by Andrea Palladio (Author), Adolf K. Placzek (Introduction)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


History, Revolution‬, Artificial Intelligence and the Future of Architecture Featuring ‪@DuoDickinson‬ via @EntreArchitect [Updated]

This post was revised to include a weblink to a subsequent follow up podcast which was equally brilliant.A few weeks ago I heard a great podcast on EntreArchitect about Artificial Intelligence and the Future of Architecture.
Find Duo online at DuoDickinson.com and check out his blog Saved by Design or follow him on Facebook and Twitter.

FREE DOWNLOAD AUDIO – Part 1

FREE DOWNLOAD AUDIO – Part 2

(Source: https://entrearchitect.com/podcast/artificial-intelligence-and-the-future-of-architecture and https://entrearchitect.com/podcast/history-revolution-future-architecture/)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


13 Examples of Green Architecture

The Morris & Gwendolyn Cafritz Foundation Environmental Center

The nickname for the Morris and Gwendolyn Cafritz Foundation Environmental Center is the Grass Building, and it perfectly captures its spirit. It’s a structure so thoughtfully designed it’s almost as energy-efficient and low impact as the greenery that surrounds it.

The Maryland building is part of an educational farm on the Potomac River Watershed that the Alice Ferguson Foundation used to teach people about the natural world. This new building—which became the 13th in the world to receive full Living Building Challenge certification in June 2017—is an educational facility designed to blur the lines between indoors and out, while still providing shelter as needed. “Part of the intent of the building is to be in the landscape and still have a bathroom to use,” says Scott Kelly, principal-in-charge at Re:Vision, a Philadelphia-based architecture and design studio.

Further Reading:
https://gbdmagazine.com/2017/grass-building
https://www.aia.org/showcases/92581-the-morris–gwendolyn-cafritz-foundation-env
https://living-future.org/lbc/case-studies/morris-gwendolyn-cafritz-foundation-environmental-center
http://hughloftingtimberframe.com/gallery/commercial/cafritz-foundation-environmental-center
http://www.cafritzfoundation.org/

Brock Environmental Center

Drawing thousands of students, the Brock Environmental Center is a regional hub for the Chesapeake Bay Foundation, in Virginia Beach, Virginia, supporting its education and wetlands restoration initiatives. A connection to nature defines the building’s siting, which provides sweeping views of the marsh and also anticipates sea-level rise and storm surges with its raised design. Parts were sourced from salvage: Its maple floors once belonged to a local gymnasium while school bleachers, complete with graffiti, were used for interior wood trim. The center was recognized for its positive footprint: It has composting toilets, captures and treats rainfall for use as drinking water, and produces 80 percent more energy than it uses, selling the excess to the grid.

Further Reading:
http://www.cbf.org/about-cbf/locations/virginia/facilities/brock-environmental-center
https://living-future.org/lbc/case-studies/the-chesapeake-bay-brock-environmental-center
https://www.visitvirginiabeach.com/listing/chesapeake-bay-foundations-brock-environmental-center/979
https://www.aia.org/showcases/76311-brock-environmental-center

Discovery Elementary School

Students have three distinct, age-appropriate playgrounds—with natural elements such as rocks and fallen trees—at Arlington, Virginia’s Discovery Elementary School. The name honors astronaut John Glenn, who returned to space on the Discovery shuttle and once lived in the neighborhood. Exploration is a theme at the school, whose interior focuses on forests, oceans, atmosphere, and the solar system. The largest zero-energy school in the country, it offers “hands-on learning around energy efficiency and generation,” jurors noted. The school maximizes natural light and provides views to the outside in all classrooms.

Further Reading:
https://www.aia.org/showcases/71481-discovery-elementary-school-
https://www.aiadc.com/sites/default/files/031%20-%20DiscoveryElementarySchool.pdf
https://www.google.com/search?q=Discovery+Elementary+School+AIA&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjS-pnHo6LcAhUMON8KHSlUDlYQsAQIdA&biw=1583&bih=1187

Bristol Community College

A laboratory is an energy-intensive enterprise, with specialized lighting and ventilation needs. That’s why jurors praised the airy health and science building at Bristol Community College, in Fall River, Massachusetts, for its net-zero energy achievement, “a difficult feat,” they noted, “in a cold climate like New England’s.” The move saves $103,000 in annual operating costs and allows the college, which offers a suite of courses in sustainability and energy, to practice what it teaches. Part of a holistic campus redesign, the new building’s location increases the density—and thus walkability—of campus for students.

Further Reading:
https://www.aia.org/showcases/71576-bristol-community-college-john-j-sbrega-heal
https://www.mass.gov/service-details/bristol-community-college-john-j-sbrega-health-and-science-building
http://www.architectmagazine.com/project-gallery/bristol-community-college-john-j-sbrega-health-and-science-building_o

Central Energy Facility

Orange and red pipes flaunt their role in “heat recovery” at Stanford University’s Central Energy Facility. The center for powering the California campus—more than a thousand buildings—the facility was transformed from an aging gas-fired plant to one fueled mostly by an off-site solar farm, fulfilling a goal of carbon neutrality and reducing energy use by a third. With large health care and research buildings, the campus needs as much heating as cooling; now a unique recovery system taps heat created in cooling processes to supply 93 percent of the heating and hot water required for campus buildings. The plant reduces Stanford emissions by 68 percent and potable water usage by 18 percent, potentially saving millions of dollars and one of the state’s scarce resources.

Further Reading:
https://www.aia.org/showcases/25976-stanford-university-central-energy-facility
https://sustainable.stanford.edu/new-system
https://www.archdaily.com/786168/stanford-university-central-energy-facility-zgf-architects
https://www.zgf.com/project/stanford-university-central-energy-facility

Ng Teng Fong General Hospital

Like other buildings in Singapore, Ng Teng Fong General Hospital incorporates parks, green roofs, and vertical plantings throughout its campus. But the city-state’s hospitals haven’t traditionally offered direct access to fresh air, light, and outdoor views. This hospital marks a dramatic change, optimizing each for patients. About 70 percent of the facility is naturally ventilated and cooled by fans, cross-ventilation, and exterior shading, saving on precious water resources. The building uses 38 percent less energy than a typical hospital in the area.

Further Reading:
https://www.aia.org/showcases/76821-ng-teng-fong-general-hospital–jurong-commun
http://www.hok.com/about/news/2017/07/25/ng_teng_fong_general_international_academy_for_design_and_health_awards
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017/58f7c23ce58eceac31000615-aia-selects-top-10-most-sustainable-projects-of-2017-photo
http://www.topicarchitecture.com/articles/154396-how-modern-hospitals-recognize-the-impact-o

Eden Hall Farm, Chatham University

After receiving the donation of 388-acre Eden Hall Farm, 20 miles north, Pittsburgh’s Chatham University created a satellite campus centered around a sustainable living experiment. The university views the landscape—an agricultural area adjacent to an urban center—as critical to supporting cities of the future. The original buildings are complemented by new facilities for 250 residential students (and eventually 1,200), including a dormitory, greenhouse, dining commons, and classrooms. Students get hands-on experience in renewable energy systems—the campus generates more than it uses—sustainable agriculture and aquaculture, waste treatment, and water management. Now home to the Falk School of Sustainability, the farm is producing the next generation of environmental stewards, who follow in the footsteps of alum Rachel Carson.

Further Reading:
https://www.aia.org/showcases/76481-chatham-university-eden-hall-campus
http://www.chatham.edu/news/index.php/2018/01/chatham-views/from-eden-hall-pioneer-to-farm-manager
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017
https://falk.chatham.edu/masterplan.cfm

Milken Institute School of Public Health, George Washington University

At George Washington University’s Milken Institute School of Public Health, located in the nation’s capital, design embodies well-being. Built around an atrium that admits light and air, the structure encourages physical activity with a staircase that spans its eight levels. A green roof reduces storm runoff; rainwater is collected and stored for plumbing, resulting in a 41 percent reduction in toilet fixtures’ water use. Limestone panels (left) were salvaged from the previous building on the site. Materials used throughout the building contain recycled content.

Further Reading:
https://www.aia.org/showcases/71306-milken-institute-school-of-public-health
https://publichealth.gwu.edu/content/milken-institute-school-public-health-wins-excellence-architecture-new-building-merit-award
http://designawards.architects.org/projects/honor-awards-for-design-excellence/milken-institute-school-of-public-health-george-washington-university/

National Oceanic and Atmospheric Administration’s Inouye Regional Center

Located at the heart of Pearl Harbor, on Oahu’s Ford Island, the National Oceanic and Atmospheric Administration’s Inouye Regional Center repurposed two airplane hangars—which narrowly escaped destruction in the 1941 attack—linking them with a new steel and glass building (right). The research and office facility for 800 employees was raised to guard it from rising sea levels. Given the size of the hangars, daylight illuminated only a small fraction of the space, so specially crafted lanterns reflect sunlight further into their interiors. Necessity required invention: Due to anti-terrorism regulations, no operable windows were allowed in the space. Through a passive downdraft system that taps prevailing sea breezes, the building is completely naturally ventilated. The adjacent waterfront was returned to a more natural state with native vegetation.

Further Reading:
https://www.aia.org/showcases/76911-noaa-daniel-k-inouye-regional-center
http://www.hpbmagazine.org/NOAA-Daniel-K-Inouye-Regional-Center-Honolulu-Hawaii/
http://www.architectmagazine.com/project-gallery/noaa-daniel-k-inouye-regional-center_o
http://www.hok.com/design/type/government/national-oceanic-and-atmospheric-administration-noaa/

R.W. Kern Center

Serving as the gateway to Hampshire College, in Amherst, Massachusetts, the multipurpose R.W. Kern Center holds classrooms, offices, a café, and gallery space—and is the place where prospective students are introduced to campus. The school converted what was once an oval driveway into a wildflower meadow, now encouraging a pedestrian approach (seen above). The center is self-sustaining, generating its own energy through a rooftop solar array, harvesting its water from rainfall, and processing its own waste. Its gray water treatment system is in a pilot program for the state, and may pave the way for others.

Further Reading:
https://www.aia.org/showcases/76921-rw-kern-center
https://architizer.com/projects/rw-kern-center
https://www.hampshire.edu/discover-hampshire/rw-kern-center

Manhattan 1/2/5 Garage & Salt Shed

Two buildings belonging to New York City’s sanitation department redefine municipal architecture. Resembling a grain of salt, the cubist form of the Spring Street Salt Shed holds 5,000 tons for clearing icy streets. The Manhattan 1/2/5 Garage (background), whose floors are color-coded for each of the three districts, is home to 150 vehicles, wash and repair facilities, and space for 250 workers. The garage is wrapped in 2,600 aluminum “fins,” shading devices that pivot with the sun’s rays, reducing heat gain and glare through the glazed walls while still allowing views to the outside. Municipal steam heats and cools the building, so no fuels are burned. A 1.5-acre green roof reduces heat-island effect and filters rainwater. A condensate by-product of the steam is also captured, and, along with the rainwater, used for toilets and the truck wash. Combined with low-flow fixtures, the process reduced water consumption by 77 percent.

Further Reading:
https://www.dattner.com/portfolio/manhattan-districts-125-garage/
https://www.ohny.org/site-programs/weekend/sites/dsny-manhattan-125-sanitation-garage-salt-shed
https://www.aia.org/showcases/76671-manhattan-districts-125-garage–spring-stree
http://www.architectmagazine.com/project-gallery/manhattan-districts-1-2-5-garage-spring-street-salt-shed_o
https://www.burns-group.com/project/manhattan-125-garage-and-spring-street-salt-shed/

Starbucks Hillsboro, Oregon

Starbucks has been a leader in the development and implementation of a scalable green building program for over a decade .Starbucks joined the U.S. Green Building Council® (USGBC) in 2001 and collaborated with them to develop the LEED® for Retail program, an effort to adapt LEED (Leadership in Energy and Environmental Design) to new construction and commercial interior strategies for retail businesses. In 2008,Starbucks challenged themselves to use LEED certification not just for flagship stores and larger buildings, but for all new, company-operated stores. Many people, even internally, were skeptical, especially with Starbucks growth across the globe. But by collaborating with USGBC and other like-minded organizations, we have been able to integrate green building design not only into new stores but also into our existing store portfolio. Starbucks has also succeeded in providing a practical certification option for retailers of all sizes.

Further Reading:
https://www.starbucks.com/responsibility/environment/leed-certified-stores

The Edge, Deloitte

The Edge, located in Amsterdam, is a model of sustainability.is billed as the world’s most sustainable office building and has the certification to prove it. But, it’s more than that. The place is, well, fun. And interesting. And inviting. So much so that professionals are actually applying for employment with Deloitte Netherlands because they want to work in the building. That it has become a recruiting tool is a satisfying side effect of a project designed to both redefine efficiency and change the way people work. “We wanted to ensure that our building not only had the right sustainability credentials, but was also a real innovative and inspiring place for our employees,” says Deloitte Netherlands CEO Peter Bommel.

Read the rest of this entry »


Immersive Experience in Architecture

VR-HeroPotential uses for VR and AR in architectural design are not science fiction fantasy.

New VR devices allow designers and clients inside conceptual designs. We simply load a VR device with a three-dimensional rendering of a space, and let the user experience it virtually. These VR experiences are far more effective than two-dimensional renderings at expressing the look and feel of a design. VR allows our clients to make better-educated assessments of the total sensory experience and the small details of our design. VR is helping us bridge the divide between our ideas and our clients’ perception of them, letting us effectively simulate our designs before a single nail is driven, part is molded or footing is poured. Our existing modeling programs let us render views in VR devices that are single point-of-view. The user gets to look around from that point and immerse themselves in 360-degree views. Needless to say, the ability to experience spaces before they’re paid for and built increases clients’ peace of mind about their investments.
(Source: https://www.archdaily.com/872011/will-virtual-reality-transform-the-way-architects-design)

While conversational interfaces are changing how people control the digital world,
virtual, augmented and mixed reality are changing the way that people perceive and
interact with the digital world. The virtual reality (VR) and augmented reality (AR) market is currently adolescent and fragmented. Interest is high, resulting in many novelty VR applications that deliver little real business value outside of advanced entertainment, such as video games and 360-degree spherical videos. To drive real tangible business benefit, enterprises must examine specific real-life scenarios where VR and AR can be applied to make employees more productive and enhance the design, training and visualization processes. (Source: https://www.gartner.com)
VR-Architect
Mixed reality, a type of immersion that merges and extends the technical functionality of
both AR and VR, is emerging as the immersive experience of choice providing a
compelling technology that optimizes its interface to better match how people view and
interact with their world. Mixed reality exists along a spectrum and includes head-
mounted displays (HMDs) for augmented or virtual reality as well as smartphone and
tablet-based AR and use of environmental sensors. Mixed reality represents the span of
how people perceive and interact with the digital world. (Source: https://www.gartner.com)

VR has already excelled in one area of the travel industry, in what’s been termed as ‘try
before you fly’ experiences – giving prospective tourists a chance to see their potential
destinations before booking their trip. Virgin Holidays have created Virgin Holidays
Virtual Holidays using VR and have seen a rise in sales to one of their key destinations.
In terms of creating these experiences from a design perspective, technology is both a
help and a hindrance. It’s allowing designers to get to know their audiences better, but
it’s also making it easier for businesses to lose track of the users who will eventually
own or experience the product. (Source: https://www.virgin.com/entrepreneur/how-internet-things-will-change-our-spaces)
VR-Virgin

Immersive Architecture

“Visualization matters. It’s really, really critical that people understand what they’re looking at and can contribute meaningfully to the dialogue. You want experts and non-experts to be able to derive actionable insight from what they’re seeing.”

–Matthew Krissel, Partner at KieranTimberlake

More Information:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook