An Introduction to the Architecture of the Italian Renaissance By Classical Architect and Artist ‪@FTerryArchitect ‬#RIBA #Architecture #Education #ilmaBlog

Earlier this year UK-based Francis Terry MA (Cantab), Dip Arch, RIBA Director, gave his office a wonderful presentation I would like to share with my audience:

Francis is part of a new generation of classical architects who have recently gained a reputation for designing high quality works of architecture. Francis’s pursuit of architecture grew out of his passion for drawing and his love of historic buildings. He studied architecture at Cambridge University qualifying in 1994. While at Cambridge, he used his architectural skills to design numerous stage sets for various dramatic societies including The Footlights, The Cambridge Opera Society and The European Theatre Group.

Terry along with his colleague also talk about classical architecture in modern times at a recent TEDx Talk:

More Information available by clicking here. Not only does his website display great examples of classical architecture but he has a great blog with interesting writings and videos.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Understanding Classical Proportions in Architecture & Design #ILMA #ClassicalArchitecture #Design

662A391D-65D7-4ECA-9A3E-35D07140F9B4.jpegThe following is an easy to understand reference guide to understanding the basics of classical proportions:

Further reading:

  • Vitruvius: The Ten Books on Architecture by Vitruvius (Author), Herbert Langford Warren (Illustrator), Morris Hickey Morgan (Translator)
  • The American Vignola: A Guide to the Making of Classical Architecture by William R. Ware
  • The Five Books of Architecture by Sebastino Serlio
  • Canon of the Five Orders of Architecture by Giacomo Barozzi da Vignola (Author), John Leeke (Translator), David Watkin (Introduction)
  • The Four Books of Architecture by Andrea Palladio (Author), Adolf K. Placzek (Introduction)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Precedents in Architectural Composition: Measured Drawing at the Morris-Jumel Mansion Drawing Course for Architects & Students Hosted by ICAA

Great opportunity to earn 6 AIA LUs and 6 Credits Toward the Certificate in Classical Architecture.  New York City Event, September 21 & 22, 2018.  Follow link below for additional information about the event.   The course is intended for both students and seasoned architects, as drawings can be tailored to experience level. No specific artist training is required. Basic pencil drawing and drafting skills are recommended, including knowledge of the use of an architectural scale and tape measure. A passion for classical architecture and a love of drawing are required.

The Institute of Classical Architecture & Art (ICAA) is a nonprofit membership organization committed to promoting and preserving the practice, understanding, and appreciation of classical design.

chrisman-featured

“Regarding Roman Buildings, I began to measure all their parts minutely and with the greatest care. I became so assiduous an investigator of such things that, being unable to find anything that was not made with fine judgment and beautiful proportions. I repeatedly visited various parts of Italy and abroad in order to understand the totality of buildings from their parts and commit them to drawings.”
– Andrea Palladio, Forward to The Four Books on Architecture

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Prototyping Future Worlds with Futurist Architect Filmmaker @Liam_Young featured on Mind & Machine Podcast with Host @AugustBradley #Technology #Art #Film #ilmaBlog

Earlier this week I heard a great podcast on Mind & Machine, hosted by August Bradley I wanted to share with you.
MIND & MACHINE: Future Technology, Futurist Ideas (Published on Apr 9, 2018)

Liam Young, Speculative Architect, Futurist, Sci-fi Shaper, Extreme Explorer, Provocateur, Technology Storyteller, who uses his design background combined with experience in crafting environments to prototype new worlds — worlds that reveal unexpected aspects of how we live today and how we will live in the future. Liam teaches speculative architecture and world building at Sci Arc, a leading architecture school. He founded Unknown Fields, a nomadic studio documenting expeditions to the ends of the earth, exploring unusual forgotten landscapes, and obsolete ecologies. And Liam has co-founded Tomorrows Thoughts Today, a futures think tank envisioning fantastic speculative urban settings of tomorrow.
Podcast version at: https://is.gd/MM_on_iTunes

More about and from Liam at:

http://www.propela.co.uk/liamyoung
MIND & MACHINE features interviews by August Bradley with leaders in transformational technologies.
Twitter: https://twitter.com/augustbradley
Instagram: http://www.instagram.com/mindandmachine
Website: https://www.MindAndMachine.io

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook

 


Artificial Intelligence and the Future of Architecture via @EntreArchitect

A few weeks ago I heard a great podcast on EntreArchitect about Artificial Intelligence and the Future of Architecture.

Find Duo online at DuoDickinson.com and check out his blog Saved by Design or follow him on Facebook and Twitter.

FREE DOWNLOAD AUDIO

(Source: https://entrearchitect.com/podcast/artificial-intelligence-and-the-future-of-architecture)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


How Many Architects Are There in the World?

Monditalia infographic; via ArchDaily

Monditalia infographic; via ArchDaily

(Source: https://architizer.com/blog/inspiration/industry/how-many-architects-are-in-the-world)

And in the U.S.?

There are 109,748 Architects

According to The National Council of Architectural Registration Boards, there are 109,748 architects in the United States, according to the 2016 Survey of Architectural Registration Boards. While this represents a minimal drop from the previous year (roughly .4 percent), the survey also reveals that architects increasingly hold licenses in multiple states. In fact, U.S. architects now have 126,554 reciprocal (out-of-state) licenses, a 3 percent increase from 2015.

Conducted annually by the National Council of Architectural Registration Boards (NCARB), the survey provides exclusive insight into the number of U.S. architects and reciprocal licenses.

The pool of emerging professionals working toward licensure also held steady in 2016, with more than 41,400 candidates taking the Architect Registration Examination® (ARE®) and/or reporting Architectural Experience Program (AXP) hours.

“Our data confirms that the economy is generating strong demand for initial and reciprocal licensees,” said NCARB CEO Michael J. Armstrong. “We’re also seeing continued growth in the number of architects who hold an NCARB Certificate, which facilitates reciprocal licensure across the U.S. and several countries.”

Additional data on the path to licensure will be available in July’s 2017 edition of NCARB by the Numbers.

NCARB collects data on resident and reciprocal licenses from its 54 Member Boards, which include the 50 states, the District of Columbia, Guam, Puerto Rico, and the U.S. Virgin Islands. The survey reflects registration data from January to December 2016.

To learn more about NCARB’s data and the Survey of Architectural Registration Boards, visit www.ncarb.org.

Twitter: www.twitter.com/ncarb
Facebook: www.facebook.com/NCARB
YouTube: www.youtube.com/NCARBorg
(Source: https://www.ncarb.org/press/number-us-architects-2016)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Top 20: Technology & Innovation Ideas For Architects

Thank you for all the support and encouragement over the years.  Here are some of our favorite blog posts about technology and innovation related to the field of Architecture:

  1. High Performance Building Design
  2. 3-D Printing
  3. Connected Spaces
  4. Benefits of Using Digital Twins for Construction
  5. Digital Twins
  6. Drone Technology
  7. Artificial Intelligence
  8. Immersive Experience in Architecture
  9. Smart Cities
  10. Big Data in Architecture
  11. Creating High Performance Buildings through Integrative Design Process
  12. Forget Blueprints, Now You Can Print the Building
  13. The 7 Dimensions of Building Information Modeling
  14. Parametric Architecture and Generative Design System
  15. Architecture Robots
  16. Internet of Spaces
  17. Sustainable Design Elements to Consider While Designing a Project
  18. What is a High Performance School?
  19. What is BIM? Should Your Firm Upgrade? by @FrankCunhaIII
  20. Renewable Wave Power Energy

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Design by Architectist @FrankCunhaIII #Architect #Artist

Thank you for all the support and encouragement over the years.  Here are some of our favorite blog posts about the design process related to the field of Architecture:

  1. Architecture Shall Live On (My Architecture Manifesto) by @FrankCunhaIII
  2. Timeless Architecture – Saying Good Bye to a Teacher/Mentor is Never Easy by @FrankCunhaIII
  3. Architecture in Motion by @FrankCunhaIII
  4. X Factor of Design by @FrankCunhaIII
  5. Creating High Performance Buildings through Integrative Design Process by @FrankCunhaIII
  6. Frans Johansson: “Act & Collaborate to Drive Change” by @FrankCunhaIII
  7. SPACE & PROCESS by @FrankCunhaIII
  8. Order, Formulas, and Rules by @FrankCunhaIII
  9. Mixing My Work With Pleasure (Design-Build, Modern House Using Legos) by @FrankCunhaIII
  10. The Blind Design Paradox in Architectural Design by @WJMArchitect
  11. Architects Vs. “Sculptor” Architects based on a conversation btw @WJMArchitect and @FrankCunhaIII
  12. Ophiuchus: The Serpent Bearer (Playing With Numbers) by @FrankCunhaIII
  13. From Paper and Pencil to Reality Through Collaboration by @FrankCunhaIII

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Architects @WJMArchitect And @FrankCunhaIII Respond to ILMA Fan’s Questions “ASK THE ARCHITECT”

Greetings and hope you are staying cool this summer!  Here are some of our favorite responses from Bill and Frank to fans’ questions over the years.

  1. What Are The 10 Most Unusual Things You Have Been Asked to Design so far? Answered by @WJMArchitect
  2. What Should I look For When Hiring An Architect? Answered by @FrankCunhaIII
  3. Should I Hire an Architect for My Next Building Project? Answered by @FrankCunhaIII
  4. What are Your Favorite Architecture Books? Answered by @FrankCunhaIII
  5. How Do I Rebuild After a Superstorms or Hurricane? Answered by @FrankCunhaIII
  6. How Do Architects Calculate Their Fees? Answered by @FrankCunhaIII
  7. How Well Do You Know Your Building Materials Quantities? Answered by @FrankCunhaIII
  8. How Can Architects Generate More Work and Make More Money? Answered by @FrankCunhaIII
  9. How Can Architects Produce More Effective Construction Documents? Answered by @FrankCunhaIII
  10. What Do You Say to Young Students Considering a Career in Architecture? (Part 2) Answered by @WJMArchitect
  11. What Do You Say to Young Students Considering a Career in Architecture? (Part 1) Answered by @WJMArchitect
  12. How Does a Well Documented Set of Construction Drawings Save On Construction Costs? Answered by @WJMArchitect
  13. What is the the Blind Design Paradox in Architectural Design? Answered by @WJMArchitect
  14. What Are the TEN “Demandments” of Architecture? Answered by @WJMArchitect
  15. Do You Have an Architectural Design Manifesto? If So, Can You Share It With Us? Answered by @FrankCunhaIII

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 

 

 

 

 


13 Examples of Green Architecture

The Morris & Gwendolyn Cafritz Foundation Environmental Center

The nickname for the Morris and Gwendolyn Cafritz Foundation Environmental Center is the Grass Building, and it perfectly captures its spirit. It’s a structure so thoughtfully designed it’s almost as energy-efficient and low impact as the greenery that surrounds it.

The Maryland building is part of an educational farm on the Potomac River Watershed that the Alice Ferguson Foundation used to teach people about the natural world. This new building—which became the 13th in the world to receive full Living Building Challenge certification in June 2017—is an educational facility designed to blur the lines between indoors and out, while still providing shelter as needed. “Part of the intent of the building is to be in the landscape and still have a bathroom to use,” says Scott Kelly, principal-in-charge at Re:Vision, a Philadelphia-based architecture and design studio.

Further Reading:
https://gbdmagazine.com/2017/grass-building
https://www.aia.org/showcases/92581-the-morris–gwendolyn-cafritz-foundation-env
https://living-future.org/lbc/case-studies/morris-gwendolyn-cafritz-foundation-environmental-center
http://hughloftingtimberframe.com/gallery/commercial/cafritz-foundation-environmental-center
http://www.cafritzfoundation.org/

Brock Environmental Center

Drawing thousands of students, the Brock Environmental Center is a regional hub for the Chesapeake Bay Foundation, in Virginia Beach, Virginia, supporting its education and wetlands restoration initiatives. A connection to nature defines the building’s siting, which provides sweeping views of the marsh and also anticipates sea-level rise and storm surges with its raised design. Parts were sourced from salvage: Its maple floors once belonged to a local gymnasium while school bleachers, complete with graffiti, were used for interior wood trim. The center was recognized for its positive footprint: It has composting toilets, captures and treats rainfall for use as drinking water, and produces 80 percent more energy than it uses, selling the excess to the grid.

Further Reading:
http://www.cbf.org/about-cbf/locations/virginia/facilities/brock-environmental-center
https://living-future.org/lbc/case-studies/the-chesapeake-bay-brock-environmental-center
https://www.visitvirginiabeach.com/listing/chesapeake-bay-foundations-brock-environmental-center/979
https://www.aia.org/showcases/76311-brock-environmental-center

Discovery Elementary School

Students have three distinct, age-appropriate playgrounds—with natural elements such as rocks and fallen trees—at Arlington, Virginia’s Discovery Elementary School. The name honors astronaut John Glenn, who returned to space on the Discovery shuttle and once lived in the neighborhood. Exploration is a theme at the school, whose interior focuses on forests, oceans, atmosphere, and the solar system. The largest zero-energy school in the country, it offers “hands-on learning around energy efficiency and generation,” jurors noted. The school maximizes natural light and provides views to the outside in all classrooms.

Further Reading:
https://www.aia.org/showcases/71481-discovery-elementary-school-
https://www.aiadc.com/sites/default/files/031%20-%20DiscoveryElementarySchool.pdf
https://www.google.com/search?q=Discovery+Elementary+School+AIA&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjS-pnHo6LcAhUMON8KHSlUDlYQsAQIdA&biw=1583&bih=1187

Bristol Community College

A laboratory is an energy-intensive enterprise, with specialized lighting and ventilation needs. That’s why jurors praised the airy health and science building at Bristol Community College, in Fall River, Massachusetts, for its net-zero energy achievement, “a difficult feat,” they noted, “in a cold climate like New England’s.” The move saves $103,000 in annual operating costs and allows the college, which offers a suite of courses in sustainability and energy, to practice what it teaches. Part of a holistic campus redesign, the new building’s location increases the density—and thus walkability—of campus for students.

Further Reading:
https://www.aia.org/showcases/71576-bristol-community-college-john-j-sbrega-heal
https://www.mass.gov/service-details/bristol-community-college-john-j-sbrega-health-and-science-building
http://www.architectmagazine.com/project-gallery/bristol-community-college-john-j-sbrega-health-and-science-building_o

Central Energy Facility

Orange and red pipes flaunt their role in “heat recovery” at Stanford University’s Central Energy Facility. The center for powering the California campus—more than a thousand buildings—the facility was transformed from an aging gas-fired plant to one fueled mostly by an off-site solar farm, fulfilling a goal of carbon neutrality and reducing energy use by a third. With large health care and research buildings, the campus needs as much heating as cooling; now a unique recovery system taps heat created in cooling processes to supply 93 percent of the heating and hot water required for campus buildings. The plant reduces Stanford emissions by 68 percent and potable water usage by 18 percent, potentially saving millions of dollars and one of the state’s scarce resources.

Further Reading:
https://www.aia.org/showcases/25976-stanford-university-central-energy-facility
https://sustainable.stanford.edu/new-system
https://www.archdaily.com/786168/stanford-university-central-energy-facility-zgf-architects
https://www.zgf.com/project/stanford-university-central-energy-facility

Ng Teng Fong General Hospital

Like other buildings in Singapore, Ng Teng Fong General Hospital incorporates parks, green roofs, and vertical plantings throughout its campus. But the city-state’s hospitals haven’t traditionally offered direct access to fresh air, light, and outdoor views. This hospital marks a dramatic change, optimizing each for patients. About 70 percent of the facility is naturally ventilated and cooled by fans, cross-ventilation, and exterior shading, saving on precious water resources. The building uses 38 percent less energy than a typical hospital in the area.

Further Reading:
https://www.aia.org/showcases/76821-ng-teng-fong-general-hospital–jurong-commun
http://www.hok.com/about/news/2017/07/25/ng_teng_fong_general_international_academy_for_design_and_health_awards
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017/58f7c23ce58eceac31000615-aia-selects-top-10-most-sustainable-projects-of-2017-photo
http://www.topicarchitecture.com/articles/154396-how-modern-hospitals-recognize-the-impact-o

Eden Hall Farm, Chatham University

After receiving the donation of 388-acre Eden Hall Farm, 20 miles north, Pittsburgh’s Chatham University created a satellite campus centered around a sustainable living experiment. The university views the landscape—an agricultural area adjacent to an urban center—as critical to supporting cities of the future. The original buildings are complemented by new facilities for 250 residential students (and eventually 1,200), including a dormitory, greenhouse, dining commons, and classrooms. Students get hands-on experience in renewable energy systems—the campus generates more than it uses—sustainable agriculture and aquaculture, waste treatment, and water management. Now home to the Falk School of Sustainability, the farm is producing the next generation of environmental stewards, who follow in the footsteps of alum Rachel Carson.

Further Reading:
https://www.aia.org/showcases/76481-chatham-university-eden-hall-campus
http://www.chatham.edu/news/index.php/2018/01/chatham-views/from-eden-hall-pioneer-to-farm-manager
https://www.archdaily.com/869556/aia-selects-top-10-most-sustainable-projects-of-2017
https://falk.chatham.edu/masterplan.cfm

Milken Institute School of Public Health, George Washington University

At George Washington University’s Milken Institute School of Public Health, located in the nation’s capital, design embodies well-being. Built around an atrium that admits light and air, the structure encourages physical activity with a staircase that spans its eight levels. A green roof reduces storm runoff; rainwater is collected and stored for plumbing, resulting in a 41 percent reduction in toilet fixtures’ water use. Limestone panels (left) were salvaged from the previous building on the site. Materials used throughout the building contain recycled content.

Further Reading:
https://www.aia.org/showcases/71306-milken-institute-school-of-public-health
https://publichealth.gwu.edu/content/milken-institute-school-public-health-wins-excellence-architecture-new-building-merit-award
http://designawards.architects.org/projects/honor-awards-for-design-excellence/milken-institute-school-of-public-health-george-washington-university/

National Oceanic and Atmospheric Administration’s Inouye Regional Center

Located at the heart of Pearl Harbor, on Oahu’s Ford Island, the National Oceanic and Atmospheric Administration’s Inouye Regional Center repurposed two airplane hangars—which narrowly escaped destruction in the 1941 attack—linking them with a new steel and glass building (right). The research and office facility for 800 employees was raised to guard it from rising sea levels. Given the size of the hangars, daylight illuminated only a small fraction of the space, so specially crafted lanterns reflect sunlight further into their interiors. Necessity required invention: Due to anti-terrorism regulations, no operable windows were allowed in the space. Through a passive downdraft system that taps prevailing sea breezes, the building is completely naturally ventilated. The adjacent waterfront was returned to a more natural state with native vegetation.

Further Reading:
https://www.aia.org/showcases/76911-noaa-daniel-k-inouye-regional-center
http://www.hpbmagazine.org/NOAA-Daniel-K-Inouye-Regional-Center-Honolulu-Hawaii/
http://www.architectmagazine.com/project-gallery/noaa-daniel-k-inouye-regional-center_o
http://www.hok.com/design/type/government/national-oceanic-and-atmospheric-administration-noaa/

R.W. Kern Center

Serving as the gateway to Hampshire College, in Amherst, Massachusetts, the multipurpose R.W. Kern Center holds classrooms, offices, a café, and gallery space—and is the place where prospective students are introduced to campus. The school converted what was once an oval driveway into a wildflower meadow, now encouraging a pedestrian approach (seen above). The center is self-sustaining, generating its own energy through a rooftop solar array, harvesting its water from rainfall, and processing its own waste. Its gray water treatment system is in a pilot program for the state, and may pave the way for others.

Further Reading:
https://www.aia.org/showcases/76921-rw-kern-center
https://architizer.com/projects/rw-kern-center
https://www.hampshire.edu/discover-hampshire/rw-kern-center

Manhattan 1/2/5 Garage & Salt Shed

Two buildings belonging to New York City’s sanitation department redefine municipal architecture. Resembling a grain of salt, the cubist form of the Spring Street Salt Shed holds 5,000 tons for clearing icy streets. The Manhattan 1/2/5 Garage (background), whose floors are color-coded for each of the three districts, is home to 150 vehicles, wash and repair facilities, and space for 250 workers. The garage is wrapped in 2,600 aluminum “fins,” shading devices that pivot with the sun’s rays, reducing heat gain and glare through the glazed walls while still allowing views to the outside. Municipal steam heats and cools the building, so no fuels are burned. A 1.5-acre green roof reduces heat-island effect and filters rainwater. A condensate by-product of the steam is also captured, and, along with the rainwater, used for toilets and the truck wash. Combined with low-flow fixtures, the process reduced water consumption by 77 percent.

Further Reading:
https://www.dattner.com/portfolio/manhattan-districts-125-garage/
https://www.ohny.org/site-programs/weekend/sites/dsny-manhattan-125-sanitation-garage-salt-shed
https://www.aia.org/showcases/76671-manhattan-districts-125-garage–spring-stree
http://www.architectmagazine.com/project-gallery/manhattan-districts-1-2-5-garage-spring-street-salt-shed_o
https://www.burns-group.com/project/manhattan-125-garage-and-spring-street-salt-shed/

Starbucks Hillsboro, Oregon

Starbucks has been a leader in the development and implementation of a scalable green building program for over a decade .Starbucks joined the U.S. Green Building Council® (USGBC) in 2001 and collaborated with them to develop the LEED® for Retail program, an effort to adapt LEED (Leadership in Energy and Environmental Design) to new construction and commercial interior strategies for retail businesses. In 2008,Starbucks challenged themselves to use LEED certification not just for flagship stores and larger buildings, but for all new, company-operated stores. Many people, even internally, were skeptical, especially with Starbucks growth across the globe. But by collaborating with USGBC and other like-minded organizations, we have been able to integrate green building design not only into new stores but also into our existing store portfolio. Starbucks has also succeeded in providing a practical certification option for retailers of all sizes.

Further Reading:
https://www.starbucks.com/responsibility/environment/leed-certified-stores

The Edge, Deloitte

The Edge, located in Amsterdam, is a model of sustainability.is billed as the world’s most sustainable office building and has the certification to prove it. But, it’s more than that. The place is, well, fun. And interesting. And inviting. So much so that professionals are actually applying for employment with Deloitte Netherlands because they want to work in the building. That it has become a recruiting tool is a satisfying side effect of a project designed to both redefine efficiency and change the way people work. “We wanted to ensure that our building not only had the right sustainability credentials, but was also a real innovative and inspiring place for our employees,” says Deloitte Netherlands CEO Peter Bommel.

Read the rest of this entry »


Immersive Experience in Architecture

VR-HeroPotential uses for VR and AR in architectural design are not science fiction fantasy.

New VR devices allow designers and clients inside conceptual designs. We simply load a VR device with a three-dimensional rendering of a space, and let the user experience it virtually. These VR experiences are far more effective than two-dimensional renderings at expressing the look and feel of a design. VR allows our clients to make better-educated assessments of the total sensory experience and the small details of our design. VR is helping us bridge the divide between our ideas and our clients’ perception of them, letting us effectively simulate our designs before a single nail is driven, part is molded or footing is poured. Our existing modeling programs let us render views in VR devices that are single point-of-view. The user gets to look around from that point and immerse themselves in 360-degree views. Needless to say, the ability to experience spaces before they’re paid for and built increases clients’ peace of mind about their investments.
(Source: https://www.archdaily.com/872011/will-virtual-reality-transform-the-way-architects-design)

While conversational interfaces are changing how people control the digital world,
virtual, augmented and mixed reality are changing the way that people perceive and
interact with the digital world. The virtual reality (VR) and augmented reality (AR) market is currently adolescent and fragmented. Interest is high, resulting in many novelty VR applications that deliver little real business value outside of advanced entertainment, such as video games and 360-degree spherical videos. To drive real tangible business benefit, enterprises must examine specific real-life scenarios where VR and AR can be applied to make employees more productive and enhance the design, training and visualization processes. (Source: https://www.gartner.com)
VR-Architect
Mixed reality, a type of immersion that merges and extends the technical functionality of
both AR and VR, is emerging as the immersive experience of choice providing a
compelling technology that optimizes its interface to better match how people view and
interact with their world. Mixed reality exists along a spectrum and includes head-
mounted displays (HMDs) for augmented or virtual reality as well as smartphone and
tablet-based AR and use of environmental sensors. Mixed reality represents the span of
how people perceive and interact with the digital world. (Source: https://www.gartner.com)

VR has already excelled in one area of the travel industry, in what’s been termed as ‘try
before you fly’ experiences – giving prospective tourists a chance to see their potential
destinations before booking their trip. Virgin Holidays have created Virgin Holidays
Virtual Holidays using VR and have seen a rise in sales to one of their key destinations.
In terms of creating these experiences from a design perspective, technology is both a
help and a hindrance. It’s allowing designers to get to know their audiences better, but
it’s also making it easier for businesses to lose track of the users who will eventually
own or experience the product. (Source: https://www.virgin.com/entrepreneur/how-internet-things-will-change-our-spaces)
VR-Virgin

Immersive Architecture

“Visualization matters. It’s really, really critical that people understand what they’re looking at and can contribute meaningfully to the dialogue. You want experts and non-experts to be able to derive actionable insight from what they’re seeing.”

–Matthew Krissel, Partner at KieranTimberlake

More Information:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


Big Data in Architecture

Big-Data-02Big data is a term that describes the large volume of data – both structured and unstructured – that inundates a business on a day-to-day basis. But it’s not the amount of data that’s important. It’s what organizations do with the data that matters. Big data can be analyzed for insights that lead to better decisions and strategic business moves.

(Source: https://www.sas.com/en_us/insights/big-data/what-is-big-data.html)

In buildings, data might be generated by a very wide variety of sources, including:

  • Design and construction (for example building information modeling)
  • Post occupancy evaluation
  • Utilities, building services, meters, building management systems and so on
  • Infrastructure and transport systems
  • Enterprise systems such as purchasing systems, performance reporting, work
    scheduling and so on
  • Maintenance and replacement systems
  • Operational cost monitoring
  • Information and Communications Technology (ICT) systems and equipment

Data from these sources can be used to understand behavior, assess
performance, improve market competitiveness, allocate resources and so on.
Smart buildings focus on the use of these interconnected technologies to make
buildings more intelligent and responsive, ultimately improving their performance, and
might include technologies such as:

  • Automated systems
  • Intelligent building management systems
  • Energy efficiency measures
  • Wireless technologies
  • Digital infrastructures
  • Adaptive energy systems
  • Networked appliances
  • Data gathering devices
  • Information and communications networks
  • Assistive technologies
  • Remote monitoring
  • Fault diagnostics and prognostics

(Source:https://medium.com/studiotmd/designing-with-data-8fd73345afb8)

Big-Data-01{Repost} How Big Data is Transforming Architecture

The phenomenon presents huge opportunities for the built environment and the firms that design it.

Clients are demanding data from architects

Clients are starting to ask architects to deliver more than just drawing sets. They are eyeing the data-rich BIM models that firms use to document projects as a way to supply data for downstream applications, such as facilities management.

With BIM achieving some level of maturity within the industry, there is a growing expectation that architects will produce datasets, such as the COBie (Construction-Operations Building Information Exchange) spreadsheet, as part of their regular deliverables. The COBie spreadsheet is essentially a list of building assets—such as chairs and HVAC systems—that the owner can then use to manage the facility. Next year, the U.K. government will require architects working on any publicly funded project to produce COBie spreadsheets. For architects, this means that their data needs to be as rigorous as their drawings.

Clients are demanding data from buildings

Clients have also become interested in the data generated by the buildings. As previously mentioned, everything from thermostats to doors is being connected to the Internet so it can broadcast its use. At last year’s Venice Biennale, the exhibition’s director Rem Koolhaas, Hon. FAIA, predicted that “every architectural element is about to associate itself with data-driven technology.”

This data enables building owners to measure and improve their facilities’ performance quantitatively. Many are already doing this—albeit in a limited sense—with their HVAC systems. But what we are seeing from innovative building owners is the use of data to conduct a holistic assessment of their performance. The Walt Disney Co., for example, combines location tracking with sales data and other user-experience metrics to optimize the performance of its parks. As more owners come to rely on building data to improve the performance of their assets, architects need to ensure that their buildings can supply this critical data.

Data is changing the process as much as it is changes the output

The abundance of data may give rise to data warehouses and COBie spreadsheets, but the much more profound changes for architects will be procedural. For instance, using BIM to design and document a building has required a whole new set of business processes. The building might be visually similar to what would have been designed in the past, but everything behind the scenes, from contract wording to staff training, needs to be rethought.

(Source: http://www.architectmagazine.com/technology/how-big-data-is-transforming-architecture_o)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Parametric Architecture and Generative Design System

Generative design for architecture

Autodesk’s new Toronto office is the first example of a generatively designed office space. We started with high-level goals and constraints, and using the power of computation, generated thousands of design options. The concepts evolved to create a highly functional and novel space.


In parametric design, designers use declared parameters to define a form. Generative design mimics nature’s evolutionary approach to design. Designers or engineers input design goals into generative design software, along with parameters such as materials, manufacturing methods, and cost constraints. Unlike topology optimization, the software explores all the possible permutations of a solution, quickly generating design alternatives. It tests and learns from each iteration what works and what doesn’t.

generative-architecture-christoph-hermann-06Mark Burry is an example of an independent consultant that has been working on the continued construction of the unfinished design of Sagrada Família in Barcelona. Burry has been involved in parameterizing the geometric methods of Antonio Gaudi. The models are used to find solutions, by exploring and adjusting parameters, to find configurations that fit partially completed elements (Hudson, 2012). The model is then used to produce information to drive Computer Numerically Controlled (CNC) machines for fabrication.

The inverted model of the Sagrada Familia created by Gaudi

Computational strategies for defining design spaces:

  • Morphological control through continuous variables
  • State-change control through discrete variables
  • Recursive control through functions and rule sets
  • Behavioral control through object-oriented programming

(Sources:http://sophclinic.pbworks.com/f/Hernandez2006.pdf and https://fenix.tecnico.ulisboa.pt/downloadFile/395145541718/Generative%20Design%20a%20new%20stage%20in%20the%20design%20process%20-%20Rita%20Fernandes-%20nº%2058759.pdf)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


Architecture Robots

Environmental Robots

Robots Revolutionizing Architecture's Future 003

Robots are increasingly being utilized in everyday life to monitor and improve our environments. For example, Researchers from theNational University of Singapore have created a bevy of robotic swans that are designed to monitor the quality of freshwater lakes and reservoirs – such as levels of dissolved oxygen or chlorophyll – while blending in with the natural environment. The robotic birds, fitted with a number of sensors, autonomously swim across the water’s surface using underbody propellers.

(Source: https://www.dezeen.com/tag/robots/)

Robots in Construction

060306_040_ProduktionCurtainWal_SilvanOesterle_023

At ETH Zurich, Gramazio & Kohler, an architectural partnership that is especially
known for its contribution to digital fabrication and robotic construction, taught at class
using a robot arm to lay bricks. This is the course as they describe it:

“If the basic manufacturing conditions of architecture shift from manual work to digital
fabrication, what design potential is there for one of the oldest and most widespread
architectural elements — the brick? Students investigated this question in a four-week
workshop, designing brick walls to be fabricated by an industrial robot. Unlike a mason,
the robot has the ability to position each individual brick in a different way without optical reference or measurement, i.e. without extra effort. To exploit this potential, the students developed algorithmic design tools that informed the bricks of their spatial disposition according to procedural logics. Positioning this way it was possible to draft a brick wall in which each of over 400 bricks took up a specific position and rotation in space. The students defined not the geometry of the wall, but the constructive logic according to which the material was organized in a particular temporal order, and which thus produced an architectonic form.”

Though robot arms are currently the most prevalent form of robotics in architecture,
architects and designers have begun to employ other, and sometimes more radical,
robotic strategies for design. Gramazio & Kohler, in collaboration with Raffaello
d’Andrea recently put together an exhibition titled ‘Flight Assembled Architecture’ for
which small quad-rotor helicopter bots assembled a 6m-tall and 3.5m wide tower out of
1500 polystyrene foam blocks in Orléans, France.

(Source:https://www.archdaily.com/336849/5-robots-revolutionizing-architectures-future)

Robots Revolutionizing Architecture's Future 002

Walmart filed five more patents for farming processes

The patent was one of six filed by Walmart, including several focused on automating agricultural processes. The supermarket chain also plans to use drones for spraying pesticides and monitoring crop conditions.

However artificial pollination has the bigger potential to significantly affect the company’s business.

According to research by Greenpeace, pollination by bees contributes $265 billion to the global economy. So, with the world’s bee population now in major decline, robotic alternatives could prove necessary to meet the global demand for food production.

Walmart isn’t the first to have invested in artificial-pollination technology. Brisbane-based artist Michael Candy recently unveiled his design for a device featuring 3D-printed robotic flowers, while a research lab in Japan recently became the first to successfully achieve pollination using a drone.

(Source: https://www.dezeen.com/2018/03/20/walmart-patent-autonomous-robot-bees-pollinating-drones/)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


What Can Architects Do To Design Safer Classrooms For Our Children? Part 4: Safety Guidelines For Schools

ILMA Classroom 11.pngPhoto Source: The National Association of School Psychologists (NASP)

The Following is Based on the Final Report of the Sandy Hook Advisory Commission

School Site Perimeter Standards

  1. Crime Prevention Through Environmental Design (CPTED) is a crime prevention strategy that uses architectural design, landscape planning, security systems, and visual surveillance to create a potentially crime free environment by influencing human behavior and should be applied when appropriate.
  2. Fencing, landscaping, edge treatment, bollards, signage, exterior furnishings and exterior lighting may be used to establish territorial boundaries and clearly delineate areas of public, semi-public, semi-private, and private space.

Access Control

  1. School boundaries and property lines shall be clearly demarcated to control access to a school facility and shall clearly delineate areas of public, semi-public, semi-private, and private space.
  2. Where a school is a shared use facility that serves the community, internal boundaries shall be clearly defined to establish a distinct perimeter for both the school and the shared use facilities with separate and secure access points that are clearly defined. Boundaries may be defined by installing fencing, signage, edge treatment, landscaping, and ground surface treatment.
  3. The number of vehicle and pedestrian access points to school property shall be kept to a minimum and shall be clearly designated as such.
  4. Directional signage shall be installed at primary points of entry to control pedestrian and vehicular access and to clearly delineate vehicular and pedestrian traffic routes, loading/unloading zones, parking and delivery areas. Signage should be simple and have the necessary level of clarity. Signage should have reflective or lighted markings.
  5. A means shall be provided to achieve and enforce identity authentication and entry authorization at locations and areas established by school operations protocols.

Surveillance

  1. The design shall allow for the monitoring of points of entry/egress by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. At minimum, electronic surveillance shall be used at the primary access points to the site for both pedestrian and vehicular traffic.
  3. All points of vehicular entry/egress shall be adequately illuminated to enhance visibility for purposes of surveillance.
  4. Designated pedestrian and vehicular traffic routes shall be adequately illuminated to reinforce natural and or electronic surveillance during evening hours.
  5. Locate access points in areas of high visibility that can be easily observed and monitored by staff and students in the course of their normal activities. Natural surveillance may be maximized by controlling access points that clearly demarcate boundaries and spaces.
  6. Video surveillance systems may be used around the site perimeter to provide views of points of entry/egress and as a means to securely monitor an area when natural surveillance is not available.
  7. Lighting should be sufficient to illuminate potential areas of concealment, enhance observation, and to provide for the safety of individuals moving between adjacent parking areas, streets and around the school facility.
  8. Consider the design of video surveillance systems which have the ability to be used locally (on site) by emergency responders and viewed off-site at appropriate locations.

Parking Areas and Vehicular and Pedestrian Routes

  1. At the minimum, electronic surveillance shall be used at the primary access points to the site for both pedestrian and vehicular traffic.
  2. Designated pedestrian and vehicular points of entry/egress and traffic routes shall be adequately illuminated to reinforce natural and or electronic surveillance.
  3. Signage shall be posted at all vehicular access points and in delivery zones, parking areas and bus loading/unloading zones with rules as to who is allowed to use parking facilities and when they are allowed to do so. Signage should be simple and have the necessary level of clarity. Signage should have reflective or lighted markings.
  4. Parking areas shall be adequately illuminated with vandal resistant lighting.
  5. Parking shall be prohibited under or within the school building.
  6. Adequate lighting shall be provided at site entry locations, roadways, parking lots, and walkways from parking to buildings.
  7. Gas service rooms, exterior meters/regulators shall be secured.
  8. External access to school facilities shall be kept to a limited number of controlled entrances. Vehicular circulation routes shall be separated and kept to a minimum of two routes per project site for purposes of separating service and delivery areas from visitors‘ entry, bus drop-off, student parking and staff parking. Circulation routes shall be separated, clearly demarcated, and easily supervised. Provide vehicle interdiction devices at building entries to preclude vehicle access into the building.
  9. A drop-off/pick-up lane shall be designated for buses only with a dedicated loading and unloading zone designed to adequately allow for natural and/or electronic surveillance and to avoid overcrowding and accidents.
  10. Design entry roads so that vehicles do not have a straight-line approach to the main building. Use speed-calming features to keep vehicles from gaining enough speed to penetrate barriers. Speed-calming features may include, but are not limited to, speed bumps, safety islands, differing pavement surfaces, landscape buffers, exterior furnishings and light fixtures.
  11. Signage text should prevent confusion over site circulation, parking, and entrance location. Unless otherwise required, signs should not identify sensitive or high risk areas. However, signs should be erected to indicate areas of restricted admittance and use of video surveillance.
  12. Parking areas should be designed in locations that promote natural surveillance. Parking should be located within view from the occupied building, while maintaining the maximum stand-off distance possible.
  13. Locate visitor parking in areas that provide the fewest security risks to school personnel. The distance at which a potentially threatening vehicle can park in relation to school grounds and buildings should be controlled.
  14. Consider illuminating areas where recreational activities and other nontraditional uses of the building occur. If video surveillance systems are installed, adequate illumination shall be designed to accommodate it.
  15. Consider blue light emergency phones with a duress alarm in all parking areas and athletic fields. If utilized, blue light emergency phones shall be clearly visible, readily accessible and adequately illuminated to accommodate electronic surveillance.
  16. Review vehicle access routes to the school and the site civil design with emergency responders to address their incident response requirements.
  17. Design walkways from all parking areas so that they can be observed from within the school by appropriate school staff.

Recreational Areas – Playgrounds, Athletic Areas, Multipurpose Fields

  1. The design shall allow for ground level, unobstructed views, for natural and/or electronic surveillance of all outdoor athletic areas, playgrounds and recreation areas at all times.
  2. Pre-kindergarten and kindergarten play areas shall be separated from play areas designed for other students and physically secured.
  3. Athletic areas and multipurpose fields at elementary school buildings shall contain a physical protective barrier to control access and protect the area.
  4. Playgrounds and other student gathering areas shall be located away from public vehicle access areas, such as streets or parking lots by a minimum of fifty (50) feet unless prohibited by site constraints.
  5. Consider a physical protective barrier around athletic areas and multipurpose fields at secondary school buildings to control access and protect the area.
  6. Locate access points to recreational areas in areas of high visibility that can be easily observed and monitored by staff and students in the course of their normal activities. Natural surveillance may be maximized by controlling access points that clearly demarcate boundaries and spaces.
  7. Pre-K and K play areas should be designed so that they have visual sight-lines to school staff. Fencing should not diminish this visual connection.
  8. Review the design of these areas with emergency responders to address their incident response requirements.

Communication Systems

  1. All classrooms shall have two way communications with the administrative office.
  2. All communication systems shall be installed in compliance with state building and fire code requirements.
  3. Emergency Communication Systems (ECS) and/or alarm systems shall have redundant means to notify first responders, supporting agencies, public safety officials and others of an event to allow for effective response and incident management. Alarm systems must be compatible with the municipal systems in place. These systems may include radio, electronic, wireless or multimedia technology which provides real time information (such as audio, visual, mapping and relevant data) directly to first responders. Points of Broadcast input for these systems shall be reviewed with emergency responders.  A minimum of 2 shall be provided.
  4. Emergency Communication Systems (ECS) shall be installed and maintained in accordance with NFPA 72, 2010, or the most current fire code standard adopted by the local/state construction code authority. ECS may include but is not limited to public address (PA) systems, intercoms, loudspeakers, sirens, strobes, SMS text alert systems, and other emerging interoperable resource sharing communication platforms. The design of these systems shall be reviewed with emergency responders.
  5. All new buildings shall have approved radio coverage for first responders within the building based upon the existing coverage levels of communication systems at the exterior of the building. The system as installed must comply with all applicable sections of the Federal Communication Commission (FCC) Rules for Communication Systems and shall coordinate with the downlink and uplink pass band frequencies of the respective first responders. Perform a radio audibility and intelligibility test and modify system design accordingly.
  6. All in-building radio systems shall be compatible with systems used by local first responders at the time of installation.
  7. Call buttons with direct intercom communication to the central administrative office and/or security office should be installed at key public contact areas.
  8. Develop a strategy and “security team” and equip them with hand-held radios so they can be effective participants in the radio communications system.

School Building Exterior – Points of Entry/Egress and Accessibility

  1. Points of entry/egress shall be designed to allow for monitoring by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. At minimum electronic surveillance shall be used at the primary points of entry.
  3. Lighting shall be sufficient to adequately illuminate potential areas of concealment and points of building entry, and, enhance natural and/or electronic surveillance, and discourage vandalism.
  4. Consider blue light emergency phones with a duress alarm along the building perimeter as needed to enhance security. If utilized, blue light emergency phones shall be clearly visible, readily accessible and adequately illuminated to accommodate electronic surveillance.
  5. Consider the use of forced entry resistance glazing materials for windows and glazed doors using laminated glass and/or polycarbonate to significantly improve forced entry delay time beyond standard glazing techniques. A five (5) minute forced entry solution should be the design standard.

Main Entrance / Administrative Offices / Lobby

  1. Main entrances shall be well lit and unobstructed to allow for natural and/or electronic surveillance at all times.
  2. The design shall allow for visitors to be guided to a single control point for entry.
  3. The main entrance assembly (glazing, frame, & door) shall be forced entry resistant to the project standard, with a forced entry time rating as informed by local law enforcement response timing.
  4. Plans shall carefully address the extent to which glazing is used in primary entry ways, areas of high risk and areas of high traffic and the degree to which glazing is installed or treated to be bullet, blast, or shatter resistant to enhance the level of security. The district‘s priorities for the use of natural surveillance, electronic surveillance, natural light and other related security measures may affect this decision and the overall level of security.
  5. Main entrance doors shall be capable of being secured from a central location, such as the central administrative office and/or the school security office.
  6. Video surveillance cameras shall be installed in such a manner to show who enters and leaves the building and shall be monitored at locations which are attended whenever the school is occupied.
  7. The design shall allow for providing visitor accessibility only after proper identification.
  8. The use of vestibules with forced entry resistant doors and glazing to the project standard should be the design standard.
  9. The central administrative offices and/or security offices should have an unobstructed view of the main entrance lobby doors and hallways. If feasible, administrative offices abutting the main entrance should be on an exterior wall with windows for natural surveillance of visitor parking, drop off areas, and exterior routes leading to the main entrance.
  10. Walls, forced entry resistant to the project standard, should be hardened in foyers and public entries. Interior and exterior vestibule doors should be offset from each other in airlock configuration.
  11. Use vestibules to increase security. The entrance vestibule shall have both interior and exterior doors that are lockable and controllable from a remote location and be designed to achieved enhanced force entry performance as identified to the project forced entry standards.
  12. When possible, the design should force visitors to pass directly through a screening area prior to entering or leaving the school. The screening area should be an entrance vestibule, the administration/reception area, a lobby check in station, an entry kiosk, or some other controlled area. This controlled entrance should serve as the primary control point between the main entrance and all other areas of the school.
  13. Control visitor access through electronic surveillance with intercom audio and remote lock release capability at the visitor entrance.
  1. Restrict visitor access during normal hours of operation to the primary entrance. If school buildings require multiple entry points, regulate those entry points with no access to people without proper identity authentication and entry authorization. Consider an electronic access control system for authorized persons if multiple entry points are utilized during normal hours of operation.
  2. Install a panic/duress alarm or call button at an administrative/security desk as a protective measure.
  3. Proximity cards, keys, key fobs, coded entries, or other devices may be used for access control of students and staff during normal hours of operation. The system may be local (residing in the door hardware) or global (building or district- wide). Prior to installing a customized door access control system refer to the local authority having jurisdiction for compliance with state building and fire code.
  4. Consider sensors that alert administrative offices when exterior doors at all primary and secondary points of entry are left open.
  5. Consider radio frequency access control devices at primary points of entry to allow rapid entry by emergency responders. Review this technology with the emergency responders which serve the school facility.
  6. Where “forced entry” required construction is required, the forced entry delay time shall be based on the ERTA, and have the forced entry designs informed/validated by a licensed architect, professional engineer or qualified security consultant.
  7. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.

Exterior Doors

  1. The design shall allow for the points of entry/egress to be monitored by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. Lighting at these entry points shall be sufficient to illuminate potential areas of concealment, enhance natural and/or electronic surveillance, discourage and protect against vandalism.
  3. Tertiary exterior doors shall be hardened to be penetration resistant and burglar resistant.
  4. All exterior doors shall be equipped with hardware capable of implementing a full perimeter lockdown by manual or electronic means and shall be numbered per the SSIC standards.
  5. All exterior doors shall be easy to lock and allow for quick release in the event of an emergency by authorized personnel and emergency responders.
  6. All exterior doors that allow access to the interior of the school shall be numbered in sequential order in a clockwise manner starting with the main entrance. All numbers shall be visible from the street or closest point of entry/egress, contrast with its background and be retro-reflective.
  7. Doors vulnerable to unauthorized access may be monitored by adding door contacts or sensors, or may be secured through the use of other protective measures, such as delayed opening devices, or video surveillance cameras that are available for viewing from a central location, such as the central administrative office and/or security office.
  8. Specify high security keys and cylinders to prove access control.
  9. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.

Exterior Windows/Glazing/Films

  1. Windows may serve as a secondary means of egress in case of emergency. Any “rescue window” with a window latching device shall be capable of being operated from not more than forty-eight (48) inches above the finished floor.
  2. Each classroom having exterior windows shall have the classroom number affixed to the upper right-hand corner of the first and last window of the corresponding classroom. The numbers shall be reflective, with contrasting background and shall be readable from the ground plain at a minimum distance of fifty (50) feet.
  3. Plans shall carefully address the extent to which glazing is used in primary entry ways, areas of high risk and areas of high traffic and the degree to which glazing is installed or treated to be bullet, blast, or shatter resistant to enhance the level of security. The district‘s priorities for the use of natural surveillance, electronic surveillance, natural light and other related security measures may affect this decision and the overall level of security.
  4. Design windows, framing and anchoring systems to be shatter resistant, burglar resistant, and forced entry resistant to the project forced entry standards, especially in areas of high risk. Whenever feasible, specify force entry resistant glazing on all exterior glazing.
  5. Resistance for glazing may be built into the window or applied with a film or a suitable additional forced entry resistant “storm” window.
  6. Classroom windows should be operable to allow for evacuation in an emergency. Review with the authority having jurisdiction and fire department to balance emergency evacuation, external access, and security requirements.

School Building Interior

  1. Interior physical security measures are a valuable part of a school‘s overall physical security infrastructure. Some physical measures such as doors, locks, and windows deter, prevent or delay an intruder from freely moving throughout a school and from entering areas where students and personnel may be located. Natural and electronic surveillance can assist in locating and identifying a threat and minimizing the time it takes for first responders to neutralize a threat.
  2. The design shall provide for controlled access to classrooms and other areas in the interior that are predominantly used by students during normal hours of operation to protect against intruders.
  3. All interior room numbers shall be coordinated in a uniform room numbering system format. Numbering shall be in sequential order in a clockwise manner starting with the interior door closest to the main point of entry. Interior room number signage shall be wall mounted. Additional room number signage may be ceiling or flag mounted. Interior room number signage specifications and installation shall be in compliance with ADA standards and other applicable regulations as required.
  4. Record documentation drawings shall be kept which include floor plans with the room numbering system. These drawings shall be safeguarded but available for emergency responders. Review opportunities for emergency responders agencies to have these drawings as well.
  5. Review design opportunities to create interior safe havens with forced entry resistant walls and doors. These may be libraries, auditoriums, cafeterias, gyms or portions of school wings or blocks of classrooms.
  6. Establish separate entrance and exit patterns for areas that have concentrated high- volume use, such as cafeterias and corridors, to reduce time required for movement into and out of spaces and to reduce the opportunity for personal conflict. Separation of student traffic flow can help define orderly movement and save time, and an unauthorized user will perceive a greater risk of detection.
  7. Consider intruder doors that automatically lock when an intruder alarm or lockdown is activated to limit intruder accessibility within the building. If installed, intruder doors shall automatically release in the event of an emergency or power outage and must be equipped with a means for law enforcement and other first responders to open as necessary.

Interior Surveillance

  1. An intrusion detection system shall be installed in all school facilities.
  2. If video surveillance systems are utilized, the surveillance system shall be available for viewing from a central location, such as the central administrative office and/or the school security office, and at points of emergency responder incident management. Review these locations with emergency responders in the design phase.
  3. Consider electronic surveillance in lobbies, corridors, hallways, large assembly areas, stairwells or other areas (such as areas of refuge/safe havens) as a means to securely monitor those areas when natural surveillance is not available.
  4. The design of a school facility should allow for the designation of controlled hiding spaces. A controlled hiding place should create a safe place for students and personnel to hide and protect themselves in the event of an emergency. The controlled hiding space should be lockable and readily accessible. A controlled hiding space could be a classroom or some other designated area within the building.
  5. Design interior hallways and adjacent spaces to provide situational awareness of hallway conditions from these rooms, but also provide means to eliminate vision into these rooms as activated by room occupants.

Classroom Security

  1. All classrooms shall be equipped with a communications system to alert administrators in case of emergency. Such communication systems may consist of a push-to-talk button system, an identifiable telephone system, or other means.
  2. Door hardware, handles, locks and thresholds shall be ANSI/BHMA Grade 1.
  3. All classroom doors shall be lockable from the inside without requiring lock activation from the hallway, and door locks shall be tamper resistant.
  4. Classroom door locks shall be easy to lock and allow for quick release in the event of an emergency.
  5. Classroom doors with interior locks shall have the capability of being unlocked/ released from the interior with one motion.
  6. All door locking systems must comply with life safety and state building and fire codes to allow emergency evacuation.
  7. Provide doors between adjacent classrooms to provide means of moving classroom occupants from one classroom to the next as a means to relocate students and teachers from an impending hallway threat. Provide such doors with suitable locking hardware to preclude unauthorized tailgating.
  8. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.
  9. If classroom doors are equipped with a sidelight, the glazing should be penetration/forced entry resistant to the project forced entry standard.
  10. If interior windows are installed to provide lines of sight into/out of classrooms or other populated areas, certain factors should be taken into consideration relating to the size, placement and material used for those windows, including:
  11. Minimizing the size of windows or the installation of multiple interspersed smaller windows with barriers in a larger window area to deter intruder accessibility.
  12. Placing windows at a sufficient distance from the interior locking mechanism to prevent or make difficult the opening of a door or lock from outside.
  13. Concealing or obstructing window views to prevent an assailant‘s ability to ascertain the status or presence of persons inside of a classroom during lockdown.
  14. Hardening window frames and glazing to the project forced entry standards to lessen window vulnerability.

Large Assembly Areas (gym, auditorium, cafeteria, or other areas of large assembly)

  1. Points of entrance and egress shall be clearly demarcated and designed to meet the project forced entry standards.
  2. Lighting shall be sufficient to illuminate potential areas of concealment, enhance natural and/or electronic surveillance, discourage vandalism and protect against vandalism.
  3. Electronic surveillance should be used in large assembly areas and at all exit doors to securely monitor those areas when natural surveillance is not available.

Shared Space or Mixed Occupancy (library, BOE, mixed use or other community service)

  1. Shared space shall have separate, secure and controllable entrances.
  2. The design of shared space should prevent unauthorized access to the rest of the school.
  3. The design of shared space shall allow for the monitoring of points of entry/egress by natural and/or electronic surveillance during normal hours of operation.

Roofs

  1. The design shall allow for roof accessibility to authorized personnel only.
  2. Access to the roof should be internal to the building. Roof access hatches shall be locked from the inside.
  3. If external access exists, roof ladders should be removable, retractable, or lockable. Screen walls around equipment or service yards should not provide easy access to the roof or upper windows.
  4. Provide adequate lighting and controls for roof access means and roof access points into the school.

Critical Assets/Utilities

  1. Screens at utilities, such as transformers, gas meters, generators, trash dumpsters, or other equipment shall be designed to minimize concealment opportunities and adequate to preclude unauthorized access. Installation of screens at utilities shall be compliant with utility company requirements.
  2. Access to building operations systems shall be restricted to designated users with locks, keys and/or electronic access controls. Secure all mechanical rooms with intruder detection sensors.
  3. Loading docks shall be designed to keep vehicles from driving into or parking under the facility.
  4. Spaces with critical systems shall be provided appropriate graphics to be recognizable to emergency responders.
  5. Gas meter/regulator rooms shall be provided with forced entry resistant doors and to the project standards.
  6. Gas leak detection systems/sensors shall be installed wherever gas metering or appliances are installed.
  7. Shipping and receiving areas shall be separated from all utility rooms by at least fifty (50) feet unless prohibited by site constraints. If a site is determined to be physically constrained from reasonably meeting the fifty (50) foot separation requirement, maximize the separation distance between the receiving area and the utility room to the greatest extent possible. Utility rooms and service areas include electrical, telephone, data, fire alarm, fire suppression rooms, and mechanical rooms.
  8. Critical building components should be located away from vulnerable areas. Critical building components may include, but are not limited to:
    1. Emergency generator;
    2. Normal fuel storage;
    3. Main switchgear;
    4. Telephone distribution;
    5. Fire pumps;
    6. Building control centers;
    7. Main ventilation systems if critical to building operation.
    8. Elevator machinery and controls.
    9. Shafts for stairs, elevators, and utilities.

Security Infrastructure and Design Strategies

  1. The design shall include special rooms for hazardous supplies that can be locked.
  2. The design shall include secured spaces, closets, cabinets or means of protection to minimize the use of dangerous objects from shop, cooking or other similar occupancies.
  3. Egress stairwells should be located remotely and should not discharge into lobbies, parking or loading areas.
  4. Trash receptacles, dumpsters, mailboxes and other large containers shall be kept at least thirty (30) feet from the building unless prohibited by site constraints. If a site is determined to be physically constrained from reasonably meeting the thirty (30) foot separation requirement, maximize the separation distance to the greatest extent possible.

(Source: Final Report Of The Sandy Hook Advisory Commission)

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook