What About Public Private Partnerships? #ilmaBlog #HigherEducation #P3 #PPP #University #Architect

Example of Stakeholder Team (Source: Servitas)

Background on Public Private Partnerships (P3’s):

Many institutions of higher education are facing mounting pressure on their mission to deliver high-quality, affordable education to students and perform world-class research. Reductions in public funding support and concerns about overall affordability present substantial near-term and longer-term budget challenges for many institutions.

Public institutions are predominantly affected, having been constrained by suspensions or reductions in state funding. State appropriations across the US grew by just 0.5% annually between 2005 and 2015. State funding has still not recovered to 2008 levels, the last year in which state funding decisions would not have been affected by the Great Recession.

(Source: Integrated Postsecondary Education Data System (IPEDS) — state appropriations revenue divided by total fall enrollment, 2005–15)

Public-private partnership models are continuing to proliferate as cash-strapped colleges and universities seek to replace or update aging and outdated infrastructure amid tight finances.

(Source: Proliferating Partnerships)

What is the P3 Delivery Model?

A public-private partnership, or P3, is long-term agreement between a public entity and a private industry team that is tasked with designing, building, financing, operating and maintaining a public facility. The past decade has seen a steady increase in the use of P3 structures, both inside and outside higher education. In 2016, something of a watershed year for P3, multiple high-profile projects came online in response to a variety of public needs, including a $1-billion-plus water infrastructure project servicing San Antonio, and a $300-million-plus renovation of the Denver International Airport’s Great Hall.

(Source: A Few Lessons About Public-Private Partnerships)

“Public” is a non-profit institutional or governmental entity that engages a “private” for-profit entity to pay for a particular project.

The “private” partner provides funding (and often expertise) to deliver (and often operate) the project used by the “public” entity to meet its purposes.

In return for its capital, the “private” entity gets a revenue flow from the asset it has paid for.

(Source: Should your University enter into a Public/Private Partnership – the Pro’s and Con’s)

The emergence of the P3 option is happening where it matters most: projects that would be otherwise unattainable under the traditional public-improvement delivery models. For instance, 10 years ago, only a handful of higher education P3 projects were up and running; today, we are approaching three dozen such projects.

The biggest challenge is, of course, the financing component, but P3 teams bring much more to the table than money — they give public entities access to expertise and innovation that can add significant value to projects at each phase of development.

(Source: A Few Lessons About Public-Private Partnerships)

Motivations for P3 transactions vary widely, but include:

  • Supplementing traditional debt instruments. These include private capital, using off balance sheet or alternative mechanisms.
  • Transfer of risk. Historically, universities have born all or most of the risk of facilities-related projects themselves. A P3 is a way to either transfer or at least share the risk.
  • Speed and efficiency. A P3 allows for a faster development process, and time to completion is generally shorter and on schedule. The sole focus of the private entity is to complete the project on budget and on time. University infrastructure tends to have competing priorities across all-campus facility needs.
  • Outsourcing provision of non-core assets. Outsourcing allows institutions to focus investment of internal resources and capabilities on those functions that are closer to the academic needs of its students.
  • Experience. Private partners often have much more experience and skills in a particular development area (e.g., facility architecture and infrastructure, student housing needs) and are able to better accommodate the needs of students, faculty, administrators, etc.
  • Planning and budgeting. Private partners offer experience and know-how in long-term maintenance planning and whole life cycle budgeting.

(Source: Public-private partnerships in higher education What is right for your institution?)

The four types of P3s:

  • Operating contract/management agreement. Short- to medium-term contract with private firm for operating services
  • Ground lease/facility lease. Long-term lease with private developer who commits to construct, operate and maintain the project
  • Availability payment concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for annual payments subject to abatement for nonperformance
  • Demand-risk concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for rights to collect revenues related to the project

Pro’s and Con’s of P3’s:

Since their emergence in student housing several years ago, P3s have become important strategies for higher education institutions because of the many benefits they offer, including:

  • Lower developer costs
  • Developer expertise
  • Operational expertise
  • Access to capital
  • Preservation of debt capacity
  • More favorable balance sheets and credit statements
  • Risk mitigation
  • Faster procurement and project delivery (It can typically take a university about 5 years to get a project built. With a P3, that process can be reduced to just 2 years. Additionally, P3s can save approximately 25% in costs compared to typical projects.)

Beyond the above, the indirect advantages of P3s in student housing are numerous, such as they:

  • Provide better housing for students
  • Expand campus capacity
  • Create high-quality facilities
  • Expand the tax base for both a city and county
  • Provide an economic boost to surrounding areas, which likely lead to private growth and other improvements

It is important to note that, while there are many benefits of P3s for higher education institutions, these agreements also have disadvantages that need to be considered, including:

  • High cost of capital
  • Reduced control for the university
  • Complexity of deals
  • Multi-party roles and responsibilities
  • Limitation on future university development

(Source: Student Housing A Hot Sector For Public-Private Partnerships)

A LOOK AHEAD

Where Are We Heading?

  • More political involvement and pressure to consider P3
  • Pre-development Risks – Many projects failing to close
  • Issues with Construction Pricing & Labor Shortages
  • An increasing number of developers are getting in the on-campus business; however, developers are being more strategic on which projects/procurements to respond to
  • Exploration of other sources of funds like tax credits, USDA, and opportunity zones
  • Shared governance continues to grow
  • Larger, more complex P3 projects including long term concessions, availability payment models, Key Performance Indicators (KPIs)
  • Bundling of Procurements (food, housing (including faculty), academic buildings, hotel, energy, facility maintenance, etc.)

Further Reading:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


THE SPIRIT OF CAMPUS DESIGN: A reflection on the words of Werner Sensbach #Campus #Planning #Design #University #Architect

Montclair State University
Photo Credit: Mike Peters

In 1991, Werner Sensbach, who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia, wrote a paper titled “Restoring the Values of Campus Architecture”. The paragraphs that follow were excerpted from that article. They seem particularly appropriate to Montclair State University as it looks at its present campus facilities and forward to the planning of future facilities on a piece of land of spectacular beauty.

Nearly two thousand years ago, the Roman architect Vitruvius wrote that architecture should provide firmness, commodity, and delight. It is the definition of “delight” that still troubles us today. This is especially so on college campuses. Many who try to give voice to what it is that brings delight in a building or an arrangement of buildings may mention the design, the placement on the site, the choice of building materials, the ornamentation, or the landscaping. But mostly it’s just a feeling, or a sense that things are arranged just right, or a sensation of pleasure that comes over us. So academics, like nearly everyone else, often are unsure when planning for new campus construction about what is likely to be delightful. Even though the United States has 3,400 colleges, while most other advanced nations only have a few dozen, we simply have not developed in the United States a sensibility, a vocabulary, a body of principles, an aesthetic for campus architecture.

That each campus should be an “academic village” was one of Thomas Jefferson’s finest architectural insights. Higher learning is an intensely personal enterprise, with young scholars working closely with other scholars, and students sharing and arguing about ideas, religious beliefs, unusual facts, and feelings. A human scale is imperative, a scale that enhances collegiality, friendships, collaborations on research.

I believe the style of the campus buildings is important, but style is not as important as the village-like atmosphere of all the buildings and their contained spaces. University leaders must insist that architects they hire design on a warm, human scale. Scale, not style, is the essential element in good campus design. Of course, if an inviting, charming campus enclosure can be combined with excellent, stylish buildings so much the better.

The third imperative for campus planners, the special aesthetic of campus architecture, or the element of delight, is the hardest to define. It is the residue that is left after you have walked through a college campus, a sense that you have been in a special place and some of its enchantment has rubbed off on you. It is what visitors feel as they enjoy the treasures along the Washington Mall, or others feel after leaving Carnegie Hall, Longwood Gardens in southeastern Pennsylvania, Chartres Cathedral, the Piazza San Marco in Venice, or the Grand Canyon.

On a college campus the delight is generated by private garden spaces in which to converse, by chapel bells at noon or on each hour, by gleaming white columns and grand stairways, by hushed library interiors, by shiny gymnasiums and emerald playing fields, by poster-filled dormitory suites, by a harmony of windows and roofs, and by flowering trees and diagonal paths across a huge lawn. The poet Schiller once said that a really good poem is like a soft click of a well-made box when it is being closed. A great campus infuses with that kind of satisfaction.

In my view, American’s colleges and universities—and especially their physical planners—need three things to become better architectural patrons. One is a renewed sense of the special purpose of campus architecture. A second is an unswerving devotion to human scale. The third is a sense of the uncommon and particular aesthetic—the delight—that a college or university campus demands.

A surprisingly large sector of the American public has conceded a special purpose to higher education. College campuses have provided a special place for those engaged in the earnest pursuit of basic or useful knowledge, for young people devoted to self-improvement, and for making the country smarter, wiser, more artful, and more able to deal with competitor nations.

Therefore, college and university campuses have a distinct and separate purpose, as distinct as the town hall and as separate as a dairy farm. For most students the four to seven years spent in academic pursuits on a university campus are not only an important period of maturing from adolescence to adulthood but also years of heightened sensory and creative ability, years when the powers of reasoning, feeling, ethical delineations, and aesthetic appreciation reach a degree of sharpness as never before. During college years, young minds absorb impressions that often last for a lifetime: unforgettable lectures, noisy athletic contests, quiet hours in a laboratory or library, jovial dormitory banter, black-robed commencements, encounters with persons of radically different views, the rustle of leaves, transfigured nights. The American college campus serves superbly as an example of Aristotle’s idea of a good urban community as a place “where people live a common life for a noble end.”

Montclair State University
Photo Credit: Mike Peters

No architect should be permitted to build for academe unless he or she fully appreciates that his or her building is an educational tool of sorts. New buildings should add to the academic ambiance and enrich the intellectual exchanges and solitary inquiries. They should never be a mere personal statement by the architect or a clever display of technical ingenuity or artistic fashion.

Campus facilities planners need to be sure that the architects they choose are able to incorporate surprise, touches of whimsy, elegance, rapture, and wonder into their constructions. This special campus aesthetic is definitely not a frill. It is what graduates remember decades after they have left the college, and what often prompts them to contribute money to perpetuate the delight. It is what captures high school juniors and their parents in their summer pilgrimages to numerous college campuses to select those two or three institutions to which they will apply.

I think the best way to preserve the particular values of the American college campus is through a three-pronged effort:

The first is to recognize that the village-like university campus is a unique American architectural creation. No other nation has adopted the “academic village” as an architectural and landscaping form, though the ancient Oxbridge colleges came close. Academic leaders should become more knowledgeable about the distinctiveness of their campus communities and more proud of and assertive about maintaining the values of this inventive form.

Second, universities should have a broadly representative and expert blue-ribbon committee to watch over all new construction, not leave it to the vice president for administration, a facilities planner, or a trustee committee. The campus environment should be guarded and enhanced as carefully as the quality of the faculty.

Third, each college and university should draw up a set of design guidelines to help it become a patron who can list what is essential in its campus architecture. These guidelines will differ from campus to campus, but nearly all institutions should include concern for the three fundamentals: academic purpose, human scale, and a special campus aesthetic. Architects can de- sign more effectively and sympathetically if they understand the expectations of the college.

Although these words were written in 1991, they remain true today as Montclair State University continues to grow its enrollment, academic programs, research programs…and the facilities that serve them.

Source: “Restoring the Values of Campus Architecture” by Werner Sensbach (who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia)

For a list of my projects: Click Here

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


12 Rules For Architects Using Aspire Project Management Techniques #ilmaBlog #PM #Management #Business #Architecture

  1. Customer Satisfaction: Our highest priority is to satisfy the customer through early and continuous delivery of valuable design solutions.Embrace Changes: Welcome changing requirements, even late in development. Agile processes harness change for the customer’s competitive advantage.
  2. Embrace the Process: Deliver working design solutions frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
  3. Embrace Teamwork: The design team must work together daily throughout the project.
  4. Support Enthusiasm: Design projects around motivated individuals. Give them the environment and support they need and trust them to get the job done.
  5. Face-to-Face is First: The most efficient and effective method of conveying information to and within a design team is face-to-face conversation.
  6. How Do We Measure Progress: Effective, efficient and elegant design solutions are the primary measure of progress.
  7. Less Is More: Simplicity — the art of maximizing leaving stuff out — is essential. Agile processes promote sustainable development.
  8. Allow for Flexibility: The best design solutions emerge from self-organizing design teams.
  9. Execute, Monitor, Adjust: At regular intervals, the design team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.
  10. God Is In The Details: Continuous attention to technical excellence and good design enhances agility.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The Architect’s Role in Sustainable Design (and How to Use Technology & Innovation to Advance Our Green Agenda) #ilmaBlog #green #design #architecture

Background

In the design and construction field, there are two major categories of resources: renewable and non-renewable. As opposed to non-renewable resources, which are depleted with their constant use, renewable resources are not. If not managed properly Non-renewable resources might become non-existent when the rate at which they are used is much higher than the rate at which they are replaced. Renewable resources include water, geothermal energy and wind energy. Non-renewable resources include coal, natural gas and oil.  The demand for new construction is on the rise as the world’s population increases and the demand for newer, more efficient modern buildings also increase.

Architect’s Role

Because buildings account for so much energy to build and maintain, architects and designers have become very conscious about our role in minimizing our environmental footprint when we design buildings.  The American Institute of Architects, the largest organization of architects world-wide has a committee called the Committee on the Environment (COTE), which works to advance, disseminate, and advocate—to the profession, the building industry, the academy, and the public—design practices that integrate built and natural systems and enhance both the design quality and environmental performance of the built environment. COTE serves as the community and voice on behalf of AIA architects regarding sustainable design and building science and performance.

Bamboo

Renewable Resources

In green construction processes, there is an emphasis on the use of renewable resources. In many cases, this natural source becomes depleted much faster than it is able to replenish itself, therefore, it has become important that buildings make use of alternative water sources for heating, hot water and sewerage disposal throughout their life cycles, to reduce use and conserve water supplies.

Architects and designers specify rapidly renewable materials are those that regenerate more quickly than their level of demand. Our goal is to reduce the use and depletion of finite raw materials and long-cycle renewable materials by replacing them with rapidly renewable ones.  Some commonly specified rapidly renewable materials include cork, bamboo, cotton batt insulation, linoleum flooring, sunflower seed board panels, wheat-board cabinetry, wool carpeting, cork flooring, bio-based paints, geotextile fabrics such as coir and jute, soy-based insulation and form-release agent and straw bales. Some green building materials products are made of a merger of rapidly renewable materials and recycled content such as newsprint, cotton, soy-based materials, seed husks, etc.

Check out this ILMA article about “Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design” for more information on this topic.

Responsibility of Architects

Architects and designers who align with AIA’s COTE objectives, (1) recognize the value of their role in environmental leadership to advance the importance of sustainable design to the general public while incorporating sustainable design into their daily practice, (2) influence the direction of architectural education to place more emphasis on ecological literacy, sustainable design and building science, (3) communicate the AIA’s environmental and energy-related concerns to the public and private sectors and influence the decisions of the public, professionals, clients, and public officials on the impact of their environmental and energy-related decisions, (4) educate other architects on regulatory, performance, technical and building science issues and how those issues influence architecture, (5) educate the architectural profession on programming, designing, and managing building performance, (6) investigate and disseminate information regarding building performance best practices, criteria, measurement methods, planning tools, occupant-comfort, heat/air/moisture interfaces between the interior and exterior of buildings, (7) promote a more integrated practice in order to achieve environmentally and economically efficient buildings. One of the tools we will plan to promote to achieve this integration is Building Information Technology (BIM).

Smart-Building

The Role of Technology & Innovation – A Case Study (“The Edge”)

PLP Architecture and the Developer OVG Real Estate, built “The Edge” is a 430,556 SF (40,000m²) office building in the Zuidas business district in Amsterdam. It was designed for the global financial firm and main tenant, Deloitte. The project aimed to consolidate Deloitte’s employees from multiple buildings throughout the city into a single environment, and to create a ‘smart building’ to act as a catalyst for Deloitte’s transition into the digital age.

They key features of this building include the following innovations which address the environmental impact of building such a large edifice:

  • Each facade is uniquely detailed according to its orientation and purpose.
    • Load bearing walls to the south, east and west have smaller openings to provide thermal mass and shading, and solid openable panels for ventilation.
    • Louvers on the south facades are designed according to sun angles and provide additional shading for the office spaces, reducing solar heat gain.
    • Solar panels on the south facade provide enough sustainable electricity to power all smartphones, laptops and electric cars.
    • The North facades are highly transparent and use thicker glass to dampen noise from the motorway.
    • The Atrium façade is totally transparent, allowing views out over the dyke, and steady north light in.
  • The building’s Ethernet-powered LED lighting system is integrated with 30,000 sensors to continuously measure occupancy, movement, lighting levels, humidity and temperature, allowing it to automatically adjust energy use.
  • 65,000 SF of solar panels are located on the facades and roof, and remotely on the roofs of buildings of the University of Amsterdam – thereby making use of neighborhood level energy sourcing.
  • The atrium acts as a buffer between the workspace and the external environment. Excess ventilation air from the offices is used again to air condition the atrium space. The air is then ventilated back out through the top of the atrium where it passes through a heat exchanger to make use of any warmth.
  • Rain water is collected on the roof and used to flush toilets and irrigate the green terraces in the atrium and other garden areas surrounding the building.
  • Two thermal energy wells reach down to an aquifer, allowing thermal energy differentials to be stored deep underground.
  • In The Edge a new LED-lighting system has been co-developed with Philips. The Light over Ethernet (LoE) LED system is powered by Ethernet and 100% IP based. This makes the system (i.e. each luminaire individually) computer controllable, so that changes can be implemented quickly and easily without opening suspended ceilings. The luminaires are furthermore equipped with Philips’ ‘coded-light’ system allowing for a highly precise localization via smartphone down to 8 inches (20 cm) accuracy, much more precise than known WiFi or beacon systems.
  • Around 6,000 of these luminaires were placed in The Edge with every second luminaire being equipped with an additional multi-sensor to detect movement, light, infrared and temperature.
  • The Philips LoE LED system was used in all office spaces to reduce the energy requirement by around 50% compared to conventional TL-5 Lighting. Via the LoE system daily building use can be monitored. This data is fed to facility managers via the BMS allowing:
    • Remote insight into the presence of people in the building (anonymous). Heating, cooling, fresh air and lighting are fully IoT (Internet of Things) integrated and BMS controlled per 200 sqft based on occupancy – with zero occupancy there is next-to-zero energy use.
    • Predictions of occupancy at lunchtime based on real time historical data and traffic and weather information to avoid food-waste.
    • Unused rooms to be skipped for cleaning.
    • Managers to be alerted to lights that need replacing.
    • Notification of printers needing paper.
  • Every employee is connected to the building via an app on their smartphone. Using the app they can find parking spaces, free desks or other colleagues, report issues to the facilities team, or even navigate within the building.
  • Employees can customize the temperature and light levels anywhere they choose to work in the building via the mobile app. The app remembers how they like their coffee, and tracks their energy use so they’re aware of it.
  • The vast amount of data generated by the building’s digital systems and the mobile app on everything from energy use to working patterns, has huge potential for informing not only Deloitte’s own operations, but also our understanding of working environments as a whole. Discussions are currently ongoing regarding the future of this data and its use for research and knowledge transfer.
  • The green space that separates the building from the nearby motorway acts as an ecological corridor, allowing animals and insects cross the site safely.

Conclusion

Because buildings account for nearly 40 percent of global energy consumption, architects and designers have been working to impact the built environment in a positive way.  Although not every project can be as green as The Edge, by selecting materials that are renewable while reducing energy are two big contributions we can make to help ease the increasing demand for construction.

Technology can play a big part in our role to design more sustainable buildings through the use of building information modeling, energy management software, building management software, online sustainability calculators, energy modeling software, new lighting innovations, new techniques to capture and deliver energy and clean water while reducing waste, and mobile applications utilizing IoT.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook

 


NEW @FC3ARCHITECT RESIDENCE ON THE BOARDS – From Cape Cod to Center Hall Colonial

The latest designs for this new expanded home consist of a modern spin on a center hall colonial.  We achieve this by expanding the existing cape cod residence on the right side and the rear of the home.  New master bedroom suite and bedrooms are on the new second floor.   The new addition allows us to re-position the stairs to create a center hall.  The front of the home remains traditional with formal living and dining spaces on each side of the hall.  Access to the great room and new kitchen is provided through pocket doors.  The new kitchen will boost a built in breakfast nook and double-island design while the great room boosts a gas-fired fireplace.

SITE-PLAN-RENDER

1864 - Bisset 332 Oak Avenue Woodbridge NJ EX-PHOTO-02EXISTING RESIDENCE

FIRST-FLOOR-RENDER-013-D RENDERING OF FIRST FLOOR

FIRST-FLOOR-RENDER-023-D RENDERING OF FIRST FLOOR

FIRST-FLOOR-RENDER-033-D RENDERING OF FIRST FLOOR

SECOND-FLOOR-RENDER-013-D RENDERING OF SECOND FLOOR

SECOND-FLOOR-RENDER-023-D RENDERING OF SECOND FLOOR

SECOND-FLOOR-RENDER-033-D RENDERING OF SECOND FLOOREXTERIOR-RENDER-013-D RENDERING OF EXTERIOR

EXTERIOR-RENDER-023-D RENDERING OF EXTERIOREXTERIOR-RENDER-033-D RENDERING OF EXTERIOR

EXTERIOR-ELEV-RENDER-01PROPOSED FRONT ELEVATION

EXTERIOR-ELEV-RENDER-02PROPOSED RIGHT ELEVATION

EXTERIOR-ELEV-RENDER-03PROPOSED LEFT ELEVATION

EXTERIOR-ELEV-RENDER-04PROPOSED RIGHT ELEVATION

We would love to hear from you about what you think about this project. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


NEW @FC3ARCHITECT RESIDENCE ON THE BOARDS – From Plain Saltbox to Mediterranean-Style Residence

The latest designs for this new expanded home consist of a modern spin on a Mediterranean-style county home with spanish tile roof.  We achieve this by expanding the existing two-story home to the left of the existing garage and the the entrance of the existing home.  Updated second floor layouts allow for outdoor living space over the new garage addition. The new front addition boosts a new curved staircase connecting the main level living space with the bedroom spaces above.  A new foyer and dining room is created reusing existing rooms in the house.  The interior will elaborate on the theme by integrating curved archways and stone details.  The front facade was designed with order in mind – arches and columns provide rhythm and elegance for this new home.  The client opted for cast iron railings both inside and outside.

CONCEPTUAL-RESIDENCE-PROPOSED-00CONCEPTUAL-RESIDENCE-PROPOSED-03CONCEPTUAL-RESIDENCE-PROPOSED-04CONCEPTUAL-RESIDENCE-PROPOSED-12CONCEPTUAL-RESIDENCE-PROPOSED-08CONCEPTUAL-RESIDENCE-PROPOSED-09CONCEPTUAL-RESIDENCE-PROPOSED-10CONCEPTUAL-RESIDENCE-PROPOSED-07CONCEPTUAL-RESIDENCE- PROPOSED-06CONCEPTUAL-RESIDENCE-PROPOSED-05

We would love to hear from you about what you think about this project. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


History of Architecture

Jacqueline Gargus is a professor of architecture at the Knowlton School. Educated at Wellesley College and the University of Pennsylvania, she joined the Knowlton School faculty in 1988. She has also taught at the Harvard Graduate School of Design and has been a Senior Research Fellow at the Bauhaus Universität, Weimar, and the Technical University of Vienna. She is the author of Ideas of Order: A Formal Approach to Architecture (Kendall Hunt, 1994) and the multimedia digital video textbook, Architectural History 1, produced by iTunes University. Her most recent book is Architecture Guide: China (2016), co-authored with Evan Chakroff and Addison Godel.

Follow this link for access to over 40 youtube videos that take you from antiquity through mid-1800’s.

History of Architecture Youtube Playlist

If you just cannot get enough (like me) click here for another 100 episodes: iTunes History of Architecture Course

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What is the Thinking Hand in Architecture (and why we, as architects, must defend the natural slowness and diversity of experience) #ilmaBlog #Discourse #Theory #Architecture #Design

ILMA The Thinking Hand 01

2009 Book, The Thinking Hand written byArchitect Juhani Pallasmaa

In The Thinking Hand, Architect Juhani Pallasmaa reveals the miraculous potential of the human hand. He shows how the pencil in the hand of the artist or architect becomes the bridge between the imagining mind and the emerging image. The book surveys the multiple essences of the hand, its biological evolution and its role in the shaping of culture, highlighting how the hand–tool union and eye–hand–mind fusion are essential for dexterity and how ultimately the body and the senses play a crucial role in memory and creative work. Pallasmaa here continues the exploration begun in his classic work The Eyes of the Skin by further investigating the interplay of emotion and imagination, intelligence and making, theory and life, once again redefining the task of art and architecture through well-grounded human truths.

Pallasmaa notes that, “…architecture provides our most important existential icons by which we can understand both our culture and ourselves. Architecture is an art form of the eye, the hand, the head and the heart. The practice of architecture calls for the eye in the sense of requiring precise and perceptive observation. It requires the skills of the hand, which must be understood as an active instrument of processing ideas in the Heideggeran sense. As architecture is an art of constructing and physical making, its processes and origins are essential ingredients of its very expression…”

Linking art and architecture he continues, “…as today’s consumer, media and information culture increasingly manipulate the human mind through thematized environments, commercial conditioning and benumbing entertainment, art has the mission to defend the autonomy of individual experience and provide an existential ground for the human condition. One of the primary tasks of art is to safeguard the authenticity and independence of human experience.”

Pallasmaa asserts that,

“Confidence in future architecture must be based on the knowledge of its specific task; architects need to set themselves tasks that no one else knows how to imagine. Existential meanings of inhabiting space can be articulated by the art of architecture alone. Thus architecture continues to have a great human task in mediating between the world and ourselves and in providing a horizon of understanding in the human existential condition.

The task of architecture is to maintain the differentiation and hierarchical and qualitative articulation of existential space. Instead of participating in the process of further speeding up the experience of the world, architecture has to slow down experience, halt time, and defend the natural slowness and diversity of experience. Architecture must defend us against excessive exposure, noise and communication. Finally, the task of architecture is to maintain and defend silence. The duty of architecture and art is to survey ideals and new modes of perception and experience, and thus open up and widen the boundaries of our lived world.”

(Source: https://www.wiley.com/en-us/The+Thinking+Hand%3A+Existential+and+Embodied+Wisdom+in+Architecture-p-9780470779293)

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The History of Western Architecture in Photos

This slideshow requires JavaScript.

Happy Friday and enjoy the brief history lesson!

Prehistoric Times: Stonehenge in Amesbury, United Kingdom
Jason Hawkes/Getty Images

Ancient Egypt: The Pyramid of Khafre (Chephren) in Giza, Egypt
Lansbricae (Luis Leclere)/Getty Images (cropped)

Classical: The Pantheon, Rome
Werner Forman Archive/Heritage Images/Getty Images (cropped)

Byzantine: Church of Hagia Eirene, Istanbul, Turkey
Salvator Barki/Getty Images (cropped)

Romanesque: Basilica of St. Sernin, Toulouse, France
Anger O./AgenceImages courtesy Getty Images

Gothic: Notre Dame de Chartres, France
Alessandro Vannini/Getty Images (cropped)

Renaissance: Villa Rotonda (Villa Almerico-Capra), near Venice, Italy
Massimo Maria Canevarolo via Wikimedia Commons

Baroque: Palace of Versailles, France
Loop Images Tiara Anggamulia/Getty Images (cropped)

Rococo: Catherine Palace near Saint Petersburg, Russia
Sean Gallup/Getty Images

Neoclassicism: The U.S. Capitol in Washington, D.C.
Architect of the Capitol

Art Nouveau: Hôtel Lutetia, 1910, Paris, France
Justin Lorget/chesnot/Corbis via Getty Images

Beaux Arts: The Paris Opéra, Paris, France
Francisco Andrade/Getty Images (cropped)

Neo-Gothic: The 1924 Tribune Tower in Chicago
Glowimage/Getty Images (cropped)

Art Deco: The 1930 Chrysler Building in New York City
CreativeDream/Getty Images

Modernism: De La Warr Pavilion, 1935, Bexhill on Sea, East Sussex, U.K.
Peter Thompson Heritage Images/Getty Images

Postmodernism: Celebration Place, Celebration, Florida
Jackie Craven

Neo-Modernism and Parametricism: Heydar Aliyev Centre, 2012, Baku, Azerbaijan
Christopher Lee/Getty Images

Prehistoric to Parametric: Prehistoric Stonehenge (left) and Moshe Safdie’s 2011 Marina Bay Sands Resort in Singapore (right)
Left: Grant Faint / Right: photo by William Cho

(Source: Craven, Jackie. “Architecture Timeline – Western Influences on Building Design.” ThoughtCo, Apr. 21, 2018, thoughtco.com/architecture-timeline-historic-periods-styles-175996)

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What is the Role of the Architect in the Future of AR Design?

Never before in the modern history of technology has the architect, the designer, been a more important part of technology’s future. Architects have been curating and ideating on the development of ‘place’ for centuries. Gensler covers how they are leveraging AR in the coverage of AI, the Internet of Things, and Cloud computing, and how to design places using game engine technology.

Speaker: Alan Robles of Gensler

Over 24 years exploring the relationship between users and their surroundings, Alan’s been creating experience environments for clients and projects of every scale around the world. In his role at Gensler he explores the opportunities found at the fringes of the design practice, searching for the edges of the play space of each design opportunity.

(Source: bit.ly/visionsummit17)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


ILMA Architect of the Week: Adolf Loos

Do You Like Modern Architecture?

You can thank Adolf Franz Karl Viktor Maria Loos (December 10, 1870 – August 23, 1933).

Adolf  Loos was an Austrian and Czech architect and influential European theorist of modern architecture. His essay Ornament and Crime advocated smooth and clear surfaces in contrast to the lavish decorations of the fin de siècle and also to the more modern aesthetic principles of the Vienna Secession, exemplified in his design of LooshausVienna. Loos became a pioneer of modern architecture and contributed a body of theory and criticism of Modernism in architecture and design and developed the “Raumplan” (literally spatial plan) method of arranging interior spaces, exemplified in Villa Müller in Prague.

Adolf Loos Architect 02 Moller House

Villa Müller Elevation

09e765257218b1c9b78c24ba0191821c

Villa Müller Floor Plan of Mezzanine

Adolf Loos Architect 01

The Looshaus is a building in Vienna designed by Adolf Loos, regarded as one of the central buildings of Viennese Modernism. It marks the departure from historicism, but also from the floral decor of Secession, an an art movement formed in 1897 by a group of Austrian artists who had resigned from the Association of Austrian Artists, housed in the Vienna Künstlerhaus.

At age 23, Loos traveled to the United States and stayed there for three years from 1893–96. While in the United States, he mainly lived with relatives in the Philadelphia area, supported himself with odd jobs and also visited other cities such as the World’s Columbian Exposition in Chicago, St. Louis and New York. Loos returned to Vienna in 1896 and made it his permanent residence. He was a prominent figure in the city and a friend of Ludwig Wittgenstein, Arnold Schönberg, Peter Altenberg and Karl Kraus.

Inspired by his years in the New World he devoted himself to architecture. After briefly associating himself with the Vienna Secession in 1896, he rejected the style and advocated a new, plain, unadorned architecture. A utilitarian approach to use the entire floor plan completed his concept. Loos’s early commissions consisted of interior designs for shops and cafés in Vienna.

Modern architecture is a group of styles of architecture which emerged in the first half of the 20th century and became dominant after World War II. It was based upon new technologies of construction, particularly the use of glasssteel and reinforced concrete; and upon a rejection of the traditional neoclassical architecture and Beaux-Arts styles that were popular in the 19th century.  They also rejected embellishments.

Modern architecture continued to be the dominant architectural style for institutional and corporate buildings into 1980s, when it was largely deposed by postmodernism.

Notable architects important to the history and development of the modernist movement include Frank Lloyd Wright, Ludwig Mies van der Rohe, Le Corbusier, Walter Gropius, Konstantin Melnikov, Erich Mendelsohn, Richard Neutra, Louis Sullivan, Gerrit Rietveld, Bruno Taut, Gunnar Asplund, Arne Jacobsen, Oscar Niemeyer and Alvar Aalto.

Adolf Loos’ lamentation Ornament and Crime made a lasting impression on le Corbusier and Mies van der Rohe and left behind a body of attractive commercial and domestic work blending simplicity and great material warmth.

As noted by The Australian in the article Looking at Adolf Loos, modern architecture as it evolved through the middle decades of the 20th century, might have been better – more individualistic, humanistic and warmer in tone – if it had been more deeply attuned to the quirky legacy of Adolf Loos than the rigidities of Bauhaus-inspired internationalism. If Adolf Loos is our contemporary, it is not before time.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


An Introduction to the Architecture of the Italian Renaissance By Classical Architect and Artist ‪@FTerryArchitect ‬#RIBA #Architecture #Education #ilmaBlog

Earlier this year UK-based Francis Terry MA (Cantab), Dip Arch, RIBA Director, gave his office a wonderful presentation I would like to share with my audience:

Francis is part of a new generation of classical architects who have recently gained a reputation for designing high quality works of architecture. Francis’s pursuit of architecture grew out of his passion for drawing and his love of historic buildings. He studied architecture at Cambridge University qualifying in 1994. While at Cambridge, he used his architectural skills to design numerous stage sets for various dramatic societies including The Footlights, The Cambridge Opera Society and The European Theatre Group.

Terry along with his colleague also talk about classical architecture in modern times at a recent TEDx Talk:

More Information available by clicking here. Not only does his website display great examples of classical architecture but he has a great blog with interesting writings and videos.

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Understanding Classical Proportions in Architecture & Design #ILMA #ClassicalArchitecture #Design

662A391D-65D7-4ECA-9A3E-35D07140F9B4.jpegThe following is an easy to understand reference guide to understanding the basics of classical proportions:

Further reading:

  • Vitruvius: The Ten Books on Architecture by Vitruvius (Author), Herbert Langford Warren (Illustrator), Morris Hickey Morgan (Translator)
  • The American Vignola: A Guide to the Making of Classical Architecture by William R. Ware
  • The Five Books of Architecture by Sebastino Serlio
  • Canon of the Five Orders of Architecture by Giacomo Barozzi da Vignola (Author), John Leeke (Translator), David Watkin (Introduction)
  • The Four Books of Architecture by Andrea Palladio (Author), Adolf K. Placzek (Introduction)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Precedents in Architectural Composition: Measured Drawing at the Morris-Jumel Mansion Drawing Course for Architects & Students Hosted by ICAA

Great opportunity to earn 6 AIA LUs and 6 Credits Toward the Certificate in Classical Architecture.  New York City Event, September 21 & 22, 2018.  Follow link below for additional information about the event.   The course is intended for both students and seasoned architects, as drawings can be tailored to experience level. No specific artist training is required. Basic pencil drawing and drafting skills are recommended, including knowledge of the use of an architectural scale and tape measure. A passion for classical architecture and a love of drawing are required.

The Institute of Classical Architecture & Art (ICAA) is a nonprofit membership organization committed to promoting and preserving the practice, understanding, and appreciation of classical design.

chrisman-featured

“Regarding Roman Buildings, I began to measure all their parts minutely and with the greatest care. I became so assiduous an investigator of such things that, being unable to find anything that was not made with fine judgment and beautiful proportions. I repeatedly visited various parts of Italy and abroad in order to understand the totality of buildings from their parts and commit them to drawings.”
– Andrea Palladio, Forward to The Four Books on Architecture

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Prototyping Future Worlds with Futurist Architect Filmmaker @Liam_Young featured on Mind & Machine Podcast with Host @AugustBradley #Technology #Art #Film #ilmaBlog

Earlier this week I heard a great podcast on Mind & Machine, hosted by August Bradley I wanted to share with you.
MIND & MACHINE: Future Technology, Futurist Ideas (Published on Apr 9, 2018)

Liam Young, Speculative Architect, Futurist, Sci-fi Shaper, Extreme Explorer, Provocateur, Technology Storyteller, who uses his design background combined with experience in crafting environments to prototype new worlds — worlds that reveal unexpected aspects of how we live today and how we will live in the future. Liam teaches speculative architecture and world building at Sci Arc, a leading architecture school. He founded Unknown Fields, a nomadic studio documenting expeditions to the ends of the earth, exploring unusual forgotten landscapes, and obsolete ecologies. And Liam has co-founded Tomorrows Thoughts Today, a futures think tank envisioning fantastic speculative urban settings of tomorrow.
Podcast version at: https://is.gd/MM_on_iTunes

More about and from Liam at:

http://www.propela.co.uk/liamyoung
MIND & MACHINE features interviews by August Bradley with leaders in transformational technologies.
Twitter: https://twitter.com/augustbradley
Instagram: http://www.instagram.com/mindandmachine
Website: https://www.MindAndMachine.io

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook