What Will Higher Education Look Like 5, 10 or 20 Years From Now? Some Ways Colleges Can Reinvent Themselves #iLMA #eMBA #Innovation #Technology #Planning #Design #HigherEducation #HigherEd2030 #University #Architect

Introduction

Change is a natural and expected part of running a successful organization. Whether big or small, strategic pivots need to be carefully planned and well-timed. But, how do you know when your organization is ready to evolve to its next phase? Anyone that listens, watches, or reads the news knows about the rising cost of higher education and the increasing debt that education is putting on students and alumni and their families.

At a time when education is most important to keep up with increasing technological changes, institutions need to pivot or face imminent doom in an ever increasing competitive environment. Competition can come from startups or external factors in the higher education market therefore it is increasingly necessary for institutions of higher learning to take a different approach to their business operations.

This post will focus on:

  • Current Trends
  • Demographic Shifts
  • Future of Higher Education (and impacts on University Facilities & Management)
    • Changing Assumptions
    • Implications for the Physical Campus
    • Changing Trajectory
    • More Trends in Higher Education (Towards 2030)
  • Driving Technologies
  • External Forces

Current Trends

  • Online education[i] has become an increasingly accepted option, especially when “stackable” into degrees.
  • Competency-based education lowers costs and reduces completion time for students.
  • Income Share Agreements[ii] help students reduce the risk associated with student loans.
  • Online Program Manager organizations benefit both universities and nontraditional, working-adult students.
  • Enterprise training companies are filling the skills gap by working directly with employers.
  • Pathway programs facilitate increasing transnational education[iii], which serves as an additional revenue stream for universities.

Demographic Shifts

According to data from the National Clearinghouse and the Department of Education[iv]:

  • The Average Age of a College/University Student Hovers Around Twenty-Seven (Though That Is Decreasing as The Economy Heats Up)
  • 38% of Students Who Enrolled In 2011 Transferred Credits Between Different Institutions At Least Once Within Six Years.
  • 38% of Students Are Enrolled Part-Time.
  • 64% of Students Are Working Either Full-Time or Part-Time.
  • 28% of Students Have Children of Their Own or Care For Dependent Family Members.
  • 32% of Students Are from Low-Income Families.
  • The Secondary Education Experience Has an Increasingly High Variation, Resulting In Students Whose Preparation For College-Level Work Varies Greatly.

Future of Higher Education (and impacts on University Facilities & Management)

The future of higher education depends on innovation. 

University leaders who would risk dual transformation are required to exercise full commitment to multiple, potentially conflicting visions of the future. They undoubtedly confront skepticism, resistance, and inertia, which may sway them from pursuing overdue reforms.[v]

Change is upon us.

“All universities are very much struggling to answer the question of: What does [digitization[vi]] mean, and as technology rapidly changes, how can we leverage it?” . . . . Colleges afraid of asking that question do so at their own peril.”[vii]

James Soto Antony, the director of the higher-education program at Harvard’s graduate school of education.

Changing Assumptions

Until recently the need for a physical campus was based on several assumptions:

  • Physical Class Time Was Required
  • Meaningful Exchanges Occurred Face to Face
  • The Value of an Institution Was Tied to a Specific Geography
  • Books Were on Paper
  • An Undergraduate Degree Required Eight Semesters
  • Research Required Specialized Locations
  • Interactions Among Students and Faculty Were Synchronous

Implications for the Physical Campus

  • Learning – Course by course, pedagogy is being rethought to exploit the flexibility and placelessness of digital formats while maximizing the value of class time.
  • Libraries – Libraries are finding the need to provide more usable space for students and faculty.  Whether engaged in study, research or course projects, the campus community continues to migrate back to the library.
  • Offices – While the rest of North America has moved to mobile devices and shared workspaces, academic organizations tend to be locked into the private, fixed office arrangement of an earlier era – little changed from a time without web browsers and cell phones. 
  • Digital Visible – From an institutional perspective, many of the implications of digital transformation are difficult to see, lost in a thicket of business issues presenting themselves with increasing urgency. 

Changing Trajectory

University presidents and provosts are always faced with the choice of staying the course or modifying the trajectory of their institutions.  Due to failing business models, rapidly evolving digital competition and declining public support, the stakes are rising.  All should be asking how they should think about the campus built for the 21st century.[viii]  J. Michael Haggans[ix] makes the following recommendations:

  • Build no net additional square feet
  • Upgrade the best; get rid of the rest
  • Manage space and time; rethink capacity
  • Right-size the whole
  • Take sustainable action
  • Make campus matter

More Trends in Higher Education (Towards 2030)

  • The Rise of The Mega-University[x]
  • ; Public Private Partnerships (P3’s) Procurement Procedures Will Become More Prevalent
  • More Colleges Will Adopt Test-Optional Admissions
  • Social Mobility Will Matter More in College Rankings
  • Urban Colleges Will Expand[xi] — But Carefully
  • Financial Crunches Will Force More Colleges to Merge
  • The Traditional Textbook Will Be Hard to Find; Free and Open Textbooks
  • More Unbundling and Micro-Credentials
  • Continued Focus on Accelerating Mobile Apps
  • Re-Imagining Physical Campus Space in Response to New Teaching Delivery Methods
  • Transforming the Campus into A Strategic Asset with Technology
  • Education Facilities Become Environmental Innovators
  • Ethics and Inclusion: Designing for The AI Future We Want to Live In
  • Visibility (Transparency) And Connectedness
  • Sustainability from Multiple Perspectives
  • Better Customer Experiences with The Digital Supply Chain
  • Individualized Learning Design, Personalized Adaptive Learning
  • Stackable Learning Accreditation
  • Increased Personalization: More Competency-Based Education They’ll Allow Students to Master A Skill or Competency at Their Own Pace.
  • Adaptation to Workplace Needs They’ll Adapt Coursework to Meet Employer Needs for Workforce Expertise
  • Greater Affordability and Accessibility They’ll Position Educational Programs to Support Greater Availability.
  • More Hybrid Degrees[xii]
  • More Certificates and Badges, For Example: Micro-Certificates, Offer Shorter, More Compact Programs to Provide Needed Knowledge and Skills Fast[xiii]
  • Increased Sustainable Facilities – Environmental Issues Will Become Even More Important Due to Regulations and Social Awareness; Reduced Energy Costs, Water Conservation, Less Waste
  • Health & Wellness – Physical, Spiritual and Metal Wellbeing
  • Diversity and Inclusion Will Increase
  • Rise of The Micro-Campus[xiv] And Shared Campuses[xv]
  • E-Advising to Help Students Graduate
  • Evidence-Based Pedagogy
  • The Decline of The Lone-Eagle Teaching Approach (More Collaboration)
  • Optimized Class Time (70% Online, 30% Face to Face)
  • Easier Educational Transitions
  • Fewer Large Lecture Classes
  • Increased Competency-Based and Prior-Learning Credits (Credit for Moocs or From “Real World” Experience)[xvi]
  • Data-Driven Instruction
  • Aggressive Pursuit of New Revenue
  • Online and Low-Residency Degrees at Flagships
  • Deliberate Innovation, Lifetime Education[xvii]
  • The Architecture of The Residential Campus Will Evolve to Support the Future.
  • Spaces Will Be Upgraded to Try to Keep Up with Changes That Would Build In Heavy Online Usage.
  • Spaces Will Be Transformed and Likely Resemble Large Centralized, Integrated Laboratory Type Spaces. 
  • Living-Learning Spaces in Combination Will Grow, But On Some Campuses, Perhaps Not In The Traditional Way That We Have Thought About Living-Learning To Date.

Driving Technologies:

  • Emerging Technologies – Such as Augmented Reality, Virtual Reality, And Artificial Intelligence – Will Eventually Shape What the Physical Campus Of The Future Will Look Like, But Not Replace It.[xviii]
  • Mobile Digital Transformation[xix]
  • Smart Buildings and Smart Cities[xx]
  • Internet of Things
  • Artificial Intelligence (AI), Including Natural Language Processing
  • Automation (Maintenance and Transportation Vehicles, Instructors, What Else?)
  • Virtual Experience Labs, Including: Augmented Reality, Virtual Reality Learning, And Robotic Telepresence 
  • More Technology Instruction and Curricula Will Feature Digital Tools and Media Even More Prominently
  • New Frontiers For E-Learning, For Example, Blurred Modalities (Expect Online and Traditional Face-To-Face Learning to Merge)[xxi]
  • Blending the Traditional; The Internet Will Play Bigger Role in Learning
  • Big Data: Colleges Will Hone Data Use to Improve Outcomes

External Forces:

  • [xxii]: Corporate Learning Is A Freshly Lucrative Market
  • Students and Families Will Focus More on College Return On Investment, Affordability And Student Loan Debt
  • [xxiii]
  • Greater Accountability; Schools will be more accountable to students and graduates
  • Labor Market Shifts and the Rise of Automation
  • Economic Shifts and Moves Toward Emerging Markets
  • Growing Disconnect Between Employer Demands and College Experience 
  • The Growth in Urbanization and A Shift Toward Cities 
  • Restricted Immigration Policies and Student Mobility
  • Lack of Supply but Growth in Demand
  • The Rise in Non-Traditional Students 
  • Dwindling Budgets for Institutions[xxiv]
  • Complex Thinking Required Will Seek to Be Vehicles of Societal Transformation, Preparing Students to Solve Complex Global Issues

Sources & References:


[i] Online education is a flexible instructional delivery system that encompasses any kind of learning that takes place via the Internet. The quantity of distance learning and online degrees in most disciplines is large and increasing rapidly.

[ii] An Income Share Agreement (or ISA) is a financial structure in which an individual or organization provides something of value (often a fixed amount of money) to a recipient who, in exchange, agrees to pay back a percentage of their income for a fixed number of years.

[iii] Transnational education (TNE) is education delivered in a country other than the country in which the awarding institution is based, i.e., students based in country Y studying for a degree from a university in country Z.

[iv] Article accessed on April 16, 2019: https://er.educause.edu/articles/2019/3/changing-demographics-and-digital-transformation

[v]Article accessed on April 16, 2019: https://ssir.org/articles/entry/design_thinking_for_higher_education

[vi] Digitization is the process of changing from analog to digital form.

[vii] Article accessed on April 16, 2019:  https://qz.com/1070119/the-future-of-the-university-is-in-the-air-and-in-the-cloud

[viii] Article accessed on April 16, 2019: http://c21u.gatech.edu/blog/future-campus-digital-world

[ix] Michael Haggans is a Visiting Scholar in the College of Design at the University of Minnesota and Visiting Professor in the Center for 21st Century Universities at Georgia Institute of Technology.  He is a licensed architect with a Masters of Architecture from the State University of New York at Buffalo.  He has led architectural practices serving campuses in the US and Canada, and was University Architect for the University of Missouri System and University of Arizona.

[x] Article accessed on April 16, 2019:  https://www.chronicle.com/interactives/Trend19-MegaU-Main

[xi] Article accessed on April 16, 2019:  https://www.lincolninst.edu/sites/default/files/pubfiles/1285_wiewel_final.pdf

[xii] Article accessed on April 16, 2019: https://www.fastcompany.com/3046299/this-is-the-future-of-college

[xiii] Article accessed on April 16, 2019: https://www.govtech.com/education/higher-ed/Why-Micro-Credentials-Universities.html

[xiv] Article accessed on April 16, 2019: https://global.arizona.edu/micro-campus

[xv] Article accessed on April 16, 2019: https://evolllution.com/revenue-streams/global_learning/a-new-global-model-the-micro-campus

[xvi] Article accessed on April 16, 2019:  https://www.chronicle.com/article/The-Future-Is-Now-15/140479

[xvii] Article accessed on April 16, 2019:  https://evolllution.com/revenue-streams/market_opportunities/looking-to-2040-anticipating-the-future-of-higher-education

[xviii] Article accessed on April 16, 2019: https://www.eypae.com/publication/2017/future-college-campus

[xix] Article accessed on April 16, 2019: https://edtechmagazine.com/higher/article/2019/02/digital-transformation-quest-rethink-campus-operations

[xx] Article accessed on April 16, 2019: https://ilovemyarchitect.com/?s=smart+buildings

[xxi] Article accessed on April 16, 2019: https://www.theatlantic.com/education/archive/2018/04/college-online-degree-blended-learning/557642

[xxii] Article accessed on April 16, 2019: https://qz.com/1191619/amazon-is-becoming-its-own-university

[xxiii] Article accessed on April 16, 2019: https://www.fastcompany.com/3029109/5-bold-predictions-for-the-future-of-higher-education

[xxiv] Article accessed on April 16, 2019: https://www.acenet.edu/the-presidency/columns-and-features/Pages/state-funding-a-race-to-the-bottom.aspx

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Personal Reflection on the Tragedy of April 15, 2019 at Notre Dame Cathedral in Paris, France #Paris #Fire #NotreDame #Reflection #Architecture #CarpeDiem

Reflection on the Tragedy of April 15, 2019

This week is Holy Week, when millions of Western Christians mark the death and resurrection of Jesus. Under normal circumstances, Notre Dame cathedral in Paris would have been preparing to display its holy relics to the faithful on Good Friday.

But as fire engulfed the sacred site on April 15, 2019, Catholics across the world reacted in horror and disbelief, particularly when the cathedral’s iconic spire toppled amid the flames.

For generations, Notre Dame Cathedral has been a place of pilgrimage and prayer, and, even as religion in France has declined for decades, it remained the beating heart of French Catholicism, open every day for Mass.

Source: CNN

REFLECTION

When something that is tragic like the Notre Dame Cathedral fire occurs, it is important to take time to reflect on what happened.  First, I look at this tragedy as a Christian, then as the grandson of European immigrants, and finally as an Architect.  I reflect on these recent events using three distinct but entwined lenses:

  • As a Christian, I reflect on what it means to be Christian.  Although imperfect, we are all put on Earth to accomplish great things.  Some have more than others, but we all have our crosses to bear.  As Easter approaches, for many Christians around the world who celebrate this holiest of days it is a time of reflection and hope of things to come.  As Jesus said, you are not of this world (we belong to Him).  When these events happen it also makes us aware of our fleeting earthly lives.
  • As a grandson of Europeans, I feel a strong camaraderie with my neighbors in France.  As technology helps the world shrink we are becoming global citizens.  But as someone who has spent many summers and taken many trips to Europe (probably more than 30 trips over my four decades), I feel a strong connection to what happens in Europe.  I have the same feeling in my stomach that I had when 9-11 happened in New York City.  We take for granted that these beautiful structures will always be here with us.  These events remind us that we must cross off trips that are on our bucket lists sooner rather than later.
  • As an Architect, my primary objective is to safeguard the public.  Sure, I love great design and inspiring spaces as much as the next designer.  However, being an Architect means that we must put safety above all else.  When these events occur, I cannot help but think how vulnerable we are.  As Architects we are always trying to evoke safety and security into our projects – Many times decisions are made with money more than risk aversion.  A 100% safeguard world is not possible, but I challenge my fellow Architects to consider ways that we can educate and confront our clients to ensure that all our buildings are safe.  We are all human with earthly perspectives and we are all bound to mistakes as we manage economics with safety.  Take for example, the Seton Hall student housing fires that changed safety for campus of higher educations around the country.  Can this tragedy bring some good? Perhaps as leaders in our industry we can shape the safety and preservation of our landmarks and new building projects to ensure the safety of the occupants.

Churches, castles and forts are the primary reason I chose this profession. Whenever we lose a structure of significance it is like losing a loved one. Like life itself, our art and architecture must be cherished because it is all temporary after all. Carpe Diem.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What Makes Notre Dame Cathedral So Important as a Work of Architecture? #NotreDame #Architecture #Design #History

Notre Dame Cathedral is a medieval Catholic cathedral on the Île de la Cité located in Paris, France. The cathedral is considered to be one of the finest examples of Gothic architecture. The innovative use of the rib vault and flying buttress, the enormous and colorful rose windows, gothic arched windows and doorways, and the naturalism and abundance of its sculptural decoration all set it apart from earlier Romanesque architecture.

Notre Dame Cathedral is considered to be of the most well-known church buildings in the world. Construction started in 1163 and finished in 1345. It is devoted to Virgin Mary and it is one of the most popular monuments in Paris. The cathedral underwent many changes and restorations throughout time.

The location of this cathedral has a long history of religious cult. The Celts celebrated rituals there before the Romans erected a temple devoted to Jupiter. It was also the place were the first Christian church, Saint Étienne, was built. It was founded by Childeberto I in 528 AD. In 1160 the church was deemed and in 1163 the construction of the cathedral started. Opinions differ as to whether Sully or Pope Alexander III laid the foundation stones of the cathedral. Several architects took part in the construction, so differences in style are clearly seen.

There are around 13 million people who visit the Notre Dame de Paris Cathedral every year, which means this is an average of 30,000 people every day, growing to around 50,000 pilgrims and visitors who enter the cathedral on peak days.

History

Construction began in 1163 after Pope Alexander III laid the cornerstone for the new cathedral. By the time of Bishop Maurice de Sully’s death in 1196, the apse, choir and the new High Altar were all finished, while the nave itself was nearing completion. In 1200, work began on the western facade, including the west rose window and the towers, all of which were completed around 1250, along with a new north rose window. Also during the 1250s, the transepts were remodeled in the latest style of Rayonnant Gothic architecture by architects Jean de Chelles and Pierre de Montreuil, and the clerestory windows were enlarged. The last remaining elements were gradually completed during the following century.

The Cathedral of Notre-Dame de Paris was built on a site which in Roman Lutetia is believed to have been occupied by a pagan temple, and then by a Romanesque church, the Basilica of Saint Étienne, built between the 4th century and 7th century.

Notre-Dame Cathedral suffered damage and deterioration through the centuries, and after the French Revolution it was rescued from possible destruction by Napoleon, who crowned himself emperor of the French in the cathedral in 1804. Notre-Dame underwent major restorations by the French architect E.-E. Viollet-le-Duc in the mid-19th century. The cathedral is the setting for Victor Hugo’s historical novel Notre-Dame de Paris (1831).

Gothic Cathedral Builders

With the aid of only elementary drawings and templates, master stone masons meticulously directed the construction of the great medieval cathedrals of Europe. The practices of intuitive calculation, largely based on simple mathematical ratios and structural precedent, were closely guarded and passed between successive generations of masons. Specific site conditions and the insatiable demand by church authorities for higher and lighter buildings provided the impetus for continual development.

The Spire

Symbolically, spires have two functions. Traditionally, one has been to proclaim a martial power of religion. A spire, with its reminiscence of the spear point, gives the impression of strength. The second is to reach up toward the skies. The celestial and hopeful gesture of the spire is one reason for its association with religious buildings.

Holy Christian Relics

The Relics of Sainte-Chapelle are relics of Jesus Christ acquired by the French monarchy in the Middle Ages and now conserved by the Archdiocese of Paris. They were originally housed at Sainte-Chapelle in Paris and are now in the cathedral treasury of Notre Dame de Paris.  Relics believed to be a piece of the cross on which Jesus was crucified, as well as the Crown of Thorns he wore, have been kept at the cathedral for centuries. The braided circle held together by golden thread has about 70 or so thorns attached. The relics were obtained from the Byzantine Empire in 1238 and brought to Paris by King Louis IX.

Wood Construction

The framing of Notre-Dame de Paris is certainly one of the oldest structures in Paris with that of Saint-Pierre de Montmartre (1147).

It is poetically and endearingly called the Forest because of the large number of wood beams that had to be used to set it up.  Each beam coming from a different tree. It is a framework of oaks. Its measurements are very impressive: More than 328 feet (100 meters) long, 43  feet (13 meters) wide in the nave, 130 feet (40 meters) in the transept and 33 feet (10 meters) high.

In the choir, there existed a first frame with woods felled around 1160-1170 (it is estimated that some could have 300 to 400 years, which brings us to the 8th or 9th centuries !!!). This first frame has disappeared, but woods were reused in the second frame installation in 1220.

In the nave, the carpentry is set up between 1220 and 1240.  The work of the nave began between 1175 and 1182, after the consecration of the choir. The work stops after the fourth bay leaving the nave unfinished while the elevation of the facade is begun in 1208. The work of the nave will be resumed in 1218 to counter the façade.

On this frame rests a lead roof consisting of 1326 tables 0.20 inches (5 mm) thick weighing 210 tons . In the eleventh and twelfth centuries, roofs were covered with flat tile churches because of the abundant clay deposits. Paris, being far from such deposits, was preferred to lead. In 1196, Bishop Maurice de Sully bequeathed 5,000 pounds for the purchase of lead.

Although the carvings of the choir and the nave went through the centuries, those of the transepts and the spire were redone in the middle of the 19th century during the great restoration campaign of the cathedral under the direction of The Duke . Made according to the principles then in force, they differ from the framework of the choir and the nave, in particular as regards the dimensions of the beams which are much more imposing than those of the Middle Ages and more distant.

The Facade

Notre Dame’s iconic facade evokes a harmony of design based on nature and represents a level of detailed craftsmanship that no longer subsists in contemporaneous architecture. From Georges-Eugène Haussmann’s immense plaza the visitor is captivated by a stunning view of the facade’s three elaborately-decorated portals.

The left-side portal of the Virgin depicts the life of the Virgin Mary, as well as a coronation scene and an astrological calendar. The central portal depicts the Last Judgement in a kind of vertical triptych. The first and second panels show the resurrection of the dead, the judgment, Christ, and apostles.The pièce de résistance is the reigning Christ which crowns the scene.

The portal of Saint-Anne on the right features Notre Dame’s oldest and finest surviving statuary (12th century) and depicts the Virgin Mary sitting on a throne, the Christ child in her arms. Above the portals is the gallery of kings, a series of 28 statues of the kings of Israel.

The magnificent exterior of Notre Dame’s West rose window depicts the biblical figures of Adam and Eve on the outer rim. It measures an impressive 33 feet (10 meters) in diameter, which was the largest rose window constructed in its day.

The final level of the facade before reaching the towers is the “Grande Galerie” which connects the two towers at their bases. Fierce demons and birds decorate the grand gallery but are not easily visible from the ground.

The Cathedral Towers

Notre Dame’s ornate towers became a legend thanks to 19th-century novelist Victor Hugo, who invented a hunchback named Quasimodo and had him inhabit the South tower in “The Hunchback of Notre Dame”.

The towers are 223 feet (68 meters) tall offering remarkable views of the Ile de la Cité, the Seine River and the entire city itself.  After climbing 400 stairs you are rewarded with gargoyles of grimacing demons and menacing carrion birds. The South tower houses Notre Dame’s infamous 13-ton bell.

You can also admire the detail of Notre Dame’s magnificent spire, destroyed during the revolution and restored by Viollet-le-Duc.

The Magnificent Interior

Medieval architects represented their idea of human earthliness in relation to heaven through structures that were at once grandiose and ethereal–and Notre Dame’s interior achieves exactly this. The cathedral’s long halls, vaulted ceilings, and soft light filtered through intricate stained glass help us understand the medieval perspective of humanity and divinity. There is no access to the cathedral’s upper levels, obliging visitors to remain earthbound, gazing upward. The experience is breathtaking, especially on a first visit.

The cathedral’s three stained-glass rose windows are the interior’s outstanding feature. Two are found in the transept: the North rose window dates to the 13th century and is widely considered to be the most stunning. It depicts Old Testament figures surrounding the Virgin Mary. The South rose window, meanwhile, depicts the Christ surrounded by saints and angels. More modern stained glass, dating to as late as 1965, is also visible around the cathedral.

Notre Dame’s organs were restored in the 1990’s and are among the largest in France.

The choir includes a 14th-century screen which portrays the biblical Last Supper. A statue of the Virgin and Christ child, as well as funeral monuments to religious figures, are also found here.

Near the rear, Notre Dame’s treasury includes precious objects, such as crosses and crowns, made of gold and other materials.

Countless processions and historical moments took place inside the cathedral, including the crowning of Henry VI, Mary Stuart, and Emperor Napoleon I.

Sources:

http://www.notredamedeparis.fr/en/la-cathedrale/architecture/la-charpente

https://www.tripsavvy.com/notre-dame-cathedral-highlights-and-facts-1618863

https://en.wikipedia.org/wiki/Haussmann%27s_renovation_of_Paris

https://en.wikipedia.org/wiki/Notre-Dame_de_Paris

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


Augmented Reality Enables Children to Learn in the Real World #ilmaBlog #Education #VR #Technology #Classroom #MyUniversityArchitect #Architect

MBDs (Mobile broadband devices, or smartphones) allow students to access and collect additional information and clues. Students use EcoMOBILE activities developed with an augmented reality application, to navigate between “hotspots,” view information, answer questions, and observe virtual media overlaid on the physical pond.

Students can capture pictures, video, or voice recordings and take these back to the classroom to help make sense of school lessons. Through augmented reality we provide students with visualizations that would not otherwise be apparent in the natural environment (for example, virtual x-ray vision so that they can “see” a virtual carbon atom as it moves through the processes of photosynthesis and respiration).

These augmented reality experiences allow students to conceptualize and discuss processes and complex relationships that are otherwise difficult to describe or visualize.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


AIA/ALA’s 2019 Library Building Awards Includes 2 Higher Education Projects #HigherEd #University#Architect #Design #Libraries #CampusPlanning #University #Architect #ilmaBlog

Every year, the AIA is proud to partner with the American Library Association / Library Leadership and Management Association to honor the best in library architecture and design.

The AIA/ALA Library Building Award is the only award that recognizes entire library structures and all aspects of their design.

This year’s award includes two college/university libraries:

Barnard College – The Milstein Center

Architect: Skidmore, Owings & Merrill LLP (SOM)

Owner: Barnard College

Location: New York

Colorado College Tutt Library Expansion and Transformation

Architect: Pfeiffer

Owner: Colorado College

Location: Colorado Springs, Colorado

Click here to see all the award winners.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What About Public Private Partnerships? #ilmaBlog #HigherEducation #P3 #PPP #University #Architect

Example of Stakeholder Team (Source: Servitas)

Background on Public Private Partnerships (P3’s):

Many institutions of higher education are facing mounting pressure on their mission to deliver high-quality, affordable education to students and perform world-class research. Reductions in public funding support and concerns about overall affordability present substantial near-term and longer-term budget challenges for many institutions.

Public institutions are predominantly affected, having been constrained by suspensions or reductions in state funding. State appropriations across the US grew by just 0.5% annually between 2005 and 2015. State funding has still not recovered to 2008 levels, the last year in which state funding decisions would not have been affected by the Great Recession.

(Source: Integrated Postsecondary Education Data System (IPEDS) — state appropriations revenue divided by total fall enrollment, 2005–15)

Public-private partnership models are continuing to proliferate as cash-strapped colleges and universities seek to replace or update aging and outdated infrastructure amid tight finances.

(Source: Proliferating Partnerships)

What is the P3 Delivery Model?

A public-private partnership, or P3, is long-term agreement between a public entity and a private industry team that is tasked with designing, building, financing, operating and maintaining a public facility. The past decade has seen a steady increase in the use of P3 structures, both inside and outside higher education. In 2016, something of a watershed year for P3, multiple high-profile projects came online in response to a variety of public needs, including a $1-billion-plus water infrastructure project servicing San Antonio, and a $300-million-plus renovation of the Denver International Airport’s Great Hall.

(Source: A Few Lessons About Public-Private Partnerships)

“Public” is a non-profit institutional or governmental entity that engages a “private” for-profit entity to pay for a particular project.

The “private” partner provides funding (and often expertise) to deliver (and often operate) the project used by the “public” entity to meet its purposes.

In return for its capital, the “private” entity gets a revenue flow from the asset it has paid for.

(Source: Should your University enter into a Public/Private Partnership – the Pro’s and Con’s)

The emergence of the P3 option is happening where it matters most: projects that would be otherwise unattainable under the traditional public-improvement delivery models. For instance, 10 years ago, only a handful of higher education P3 projects were up and running; today, we are approaching three dozen such projects.

The biggest challenge is, of course, the financing component, but P3 teams bring much more to the table than money — they give public entities access to expertise and innovation that can add significant value to projects at each phase of development.

(Source: A Few Lessons About Public-Private Partnerships)

Motivations for P3 transactions vary widely, but include:

  • Supplementing traditional debt instruments. These include private capital, using off balance sheet or alternative mechanisms.
  • Transfer of risk. Historically, universities have born all or most of the risk of facilities-related projects themselves. A P3 is a way to either transfer or at least share the risk.
  • Speed and efficiency. A P3 allows for a faster development process, and time to completion is generally shorter and on schedule. The sole focus of the private entity is to complete the project on budget and on time. University infrastructure tends to have competing priorities across all-campus facility needs.
  • Outsourcing provision of non-core assets. Outsourcing allows institutions to focus investment of internal resources and capabilities on those functions that are closer to the academic needs of its students.
  • Experience. Private partners often have much more experience and skills in a particular development area (e.g., facility architecture and infrastructure, student housing needs) and are able to better accommodate the needs of students, faculty, administrators, etc.
  • Planning and budgeting. Private partners offer experience and know-how in long-term maintenance planning and whole life cycle budgeting.

(Source: Public-private partnerships in higher education What is right for your institution?)

The four types of P3s:

  • Operating contract/management agreement. Short- to medium-term contract with private firm for operating services
  • Ground lease/facility lease. Long-term lease with private developer who commits to construct, operate and maintain the project
  • Availability payment concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for annual payments subject to abatement for nonperformance
  • Demand-risk concession. Long-term concession with private developer to construct, operate, maintain and finance the project in exchange for rights to collect revenues related to the project

Pro’s and Con’s of P3’s:

Since their emergence in student housing several years ago, P3s have become important strategies for higher education institutions because of the many benefits they offer, including:

  • Lower developer costs
  • Developer expertise
  • Operational expertise
  • Access to capital
  • Preservation of debt capacity
  • More favorable balance sheets and credit statements
  • Risk mitigation
  • Faster procurement and project delivery (It can typically take a university about 5 years to get a project built. With a P3, that process can be reduced to just 2 years. Additionally, P3s can save approximately 25% in costs compared to typical projects.)

Beyond the above, the indirect advantages of P3s in student housing are numerous, such as they:

  • Provide better housing for students
  • Expand campus capacity
  • Create high-quality facilities
  • Expand the tax base for both a city and county
  • Provide an economic boost to surrounding areas, which likely lead to private growth and other improvements

It is important to note that, while there are many benefits of P3s for higher education institutions, these agreements also have disadvantages that need to be considered, including:

  • High cost of capital
  • Reduced control for the university
  • Complexity of deals
  • Multi-party roles and responsibilities
  • Limitation on future university development

(Source: Student Housing A Hot Sector For Public-Private Partnerships)

A LOOK AHEAD

Where Are We Heading?

  • More political involvement and pressure to consider P3
  • Pre-development Risks – Many projects failing to close
  • Issues with Construction Pricing & Labor Shortages
  • An increasing number of developers are getting in the on-campus business; however, developers are being more strategic on which projects/procurements to respond to
  • Exploration of other sources of funds like tax credits, USDA, and opportunity zones
  • Shared governance continues to grow
  • Larger, more complex P3 projects including long term concessions, availability payment models, Key Performance Indicators (KPIs)
  • Bundling of Procurements (food, housing (including faculty), academic buildings, hotel, energy, facility maintenance, etc.)

Further Reading:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


THE SPIRIT OF CAMPUS DESIGN: A reflection on the words of Werner Sensbach #Campus #Planning #Design #University #Architect

Montclair State University
Photo Credit: Mike Peters

In 1991, Werner Sensbach, who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia, wrote a paper titled “Restoring the Values of Campus Architecture”. The paragraphs that follow were excerpted from that article. They seem particularly appropriate to Montclair State University as it looks at its present campus facilities and forward to the planning of future facilities on a piece of land of spectacular beauty.

Nearly two thousand years ago, the Roman architect Vitruvius wrote that architecture should provide firmness, commodity, and delight. It is the definition of “delight” that still troubles us today. This is especially so on college campuses. Many who try to give voice to what it is that brings delight in a building or an arrangement of buildings may mention the design, the placement on the site, the choice of building materials, the ornamentation, or the landscaping. But mostly it’s just a feeling, or a sense that things are arranged just right, or a sensation of pleasure that comes over us. So academics, like nearly everyone else, often are unsure when planning for new campus construction about what is likely to be delightful. Even though the United States has 3,400 colleges, while most other advanced nations only have a few dozen, we simply have not developed in the United States a sensibility, a vocabulary, a body of principles, an aesthetic for campus architecture.

That each campus should be an “academic village” was one of Thomas Jefferson’s finest architectural insights. Higher learning is an intensely personal enterprise, with young scholars working closely with other scholars, and students sharing and arguing about ideas, religious beliefs, unusual facts, and feelings. A human scale is imperative, a scale that enhances collegiality, friendships, collaborations on research.

I believe the style of the campus buildings is important, but style is not as important as the village-like atmosphere of all the buildings and their contained spaces. University leaders must insist that architects they hire design on a warm, human scale. Scale, not style, is the essential element in good campus design. Of course, if an inviting, charming campus enclosure can be combined with excellent, stylish buildings so much the better.

The third imperative for campus planners, the special aesthetic of campus architecture, or the element of delight, is the hardest to define. It is the residue that is left after you have walked through a college campus, a sense that you have been in a special place and some of its enchantment has rubbed off on you. It is what visitors feel as they enjoy the treasures along the Washington Mall, or others feel after leaving Carnegie Hall, Longwood Gardens in southeastern Pennsylvania, Chartres Cathedral, the Piazza San Marco in Venice, or the Grand Canyon.

On a college campus the delight is generated by private garden spaces in which to converse, by chapel bells at noon or on each hour, by gleaming white columns and grand stairways, by hushed library interiors, by shiny gymnasiums and emerald playing fields, by poster-filled dormitory suites, by a harmony of windows and roofs, and by flowering trees and diagonal paths across a huge lawn. The poet Schiller once said that a really good poem is like a soft click of a well-made box when it is being closed. A great campus infuses with that kind of satisfaction.

In my view, American’s colleges and universities—and especially their physical planners—need three things to become better architectural patrons. One is a renewed sense of the special purpose of campus architecture. A second is an unswerving devotion to human scale. The third is a sense of the uncommon and particular aesthetic—the delight—that a college or university campus demands.

A surprisingly large sector of the American public has conceded a special purpose to higher education. College campuses have provided a special place for those engaged in the earnest pursuit of basic or useful knowledge, for young people devoted to self-improvement, and for making the country smarter, wiser, more artful, and more able to deal with competitor nations.

Therefore, college and university campuses have a distinct and separate purpose, as distinct as the town hall and as separate as a dairy farm. For most students the four to seven years spent in academic pursuits on a university campus are not only an important period of maturing from adolescence to adulthood but also years of heightened sensory and creative ability, years when the powers of reasoning, feeling, ethical delineations, and aesthetic appreciation reach a degree of sharpness as never before. During college years, young minds absorb impressions that often last for a lifetime: unforgettable lectures, noisy athletic contests, quiet hours in a laboratory or library, jovial dormitory banter, black-robed commencements, encounters with persons of radically different views, the rustle of leaves, transfigured nights. The American college campus serves superbly as an example of Aristotle’s idea of a good urban community as a place “where people live a common life for a noble end.”

Montclair State University
Photo Credit: Mike Peters

No architect should be permitted to build for academe unless he or she fully appreciates that his or her building is an educational tool of sorts. New buildings should add to the academic ambiance and enrich the intellectual exchanges and solitary inquiries. They should never be a mere personal statement by the architect or a clever display of technical ingenuity or artistic fashion.

Campus facilities planners need to be sure that the architects they choose are able to incorporate surprise, touches of whimsy, elegance, rapture, and wonder into their constructions. This special campus aesthetic is definitely not a frill. It is what graduates remember decades after they have left the college, and what often prompts them to contribute money to perpetuate the delight. It is what captures high school juniors and their parents in their summer pilgrimages to numerous college campuses to select those two or three institutions to which they will apply.

I think the best way to preserve the particular values of the American college campus is through a three-pronged effort:

The first is to recognize that the village-like university campus is a unique American architectural creation. No other nation has adopted the “academic village” as an architectural and landscaping form, though the ancient Oxbridge colleges came close. Academic leaders should become more knowledgeable about the distinctiveness of their campus communities and more proud of and assertive about maintaining the values of this inventive form.

Second, universities should have a broadly representative and expert blue-ribbon committee to watch over all new construction, not leave it to the vice president for administration, a facilities planner, or a trustee committee. The campus environment should be guarded and enhanced as carefully as the quality of the faculty.

Third, each college and university should draw up a set of design guidelines to help it become a patron who can list what is essential in its campus architecture. These guidelines will differ from campus to campus, but nearly all institutions should include concern for the three fundamentals: academic purpose, human scale, and a special campus aesthetic. Architects can de- sign more effectively and sympathetically if they understand the expectations of the college.

Although these words were written in 1991, they remain true today as Montclair State University continues to grow its enrollment, academic programs, research programs…and the facilities that serve them.

Source: “Restoring the Values of Campus Architecture” by Werner Sensbach (who served for over 25 years as Director of Facilities Planning and Administration at the University of Virginia)

For a list of my projects: Click Here

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


12 Rules For Architects Using Aspire Project Management Techniques #ilmaBlog #PM #Management #Business #Architecture

  1. Customer Satisfaction: Our highest priority is to satisfy the customer through early and continuous delivery of valuable design solutions.Embrace Changes: Welcome changing requirements, even late in development. Agile processes harness change for the customer’s competitive advantage.
  2. Embrace the Process: Deliver working design solutions frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
  3. Embrace Teamwork: The design team must work together daily throughout the project.
  4. Support Enthusiasm: Design projects around motivated individuals. Give them the environment and support they need and trust them to get the job done.
  5. Face-to-Face is First: The most efficient and effective method of conveying information to and within a design team is face-to-face conversation.
  6. How Do We Measure Progress: Effective, efficient and elegant design solutions are the primary measure of progress.
  7. Less Is More: Simplicity — the art of maximizing leaving stuff out — is essential. Agile processes promote sustainable development.
  8. Allow for Flexibility: The best design solutions emerge from self-organizing design teams.
  9. Execute, Monitor, Adjust: At regular intervals, the design team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.
  10. God Is In The Details: Continuous attention to technical excellence and good design enhances agility.

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The Architect’s Role in Sustainable Design (and How to Use Technology & Innovation to Advance Our Green Agenda) #ilmaBlog #green #design #architecture

Background

In the design and construction field, there are two major categories of resources: renewable and non-renewable. As opposed to non-renewable resources, which are depleted with their constant use, renewable resources are not. If not managed properly Non-renewable resources might become non-existent when the rate at which they are used is much higher than the rate at which they are replaced. Renewable resources include water, geothermal energy and wind energy. Non-renewable resources include coal, natural gas and oil.  The demand for new construction is on the rise as the world’s population increases and the demand for newer, more efficient modern buildings also increase.

Architect’s Role

Because buildings account for so much energy to build and maintain, architects and designers have become very conscious about our role in minimizing our environmental footprint when we design buildings.  The American Institute of Architects, the largest organization of architects world-wide has a committee called the Committee on the Environment (COTE), which works to advance, disseminate, and advocate—to the profession, the building industry, the academy, and the public—design practices that integrate built and natural systems and enhance both the design quality and environmental performance of the built environment. COTE serves as the community and voice on behalf of AIA architects regarding sustainable design and building science and performance.

Bamboo

Renewable Resources

In green construction processes, there is an emphasis on the use of renewable resources. In many cases, this natural source becomes depleted much faster than it is able to replenish itself, therefore, it has become important that buildings make use of alternative water sources for heating, hot water and sewerage disposal throughout their life cycles, to reduce use and conserve water supplies.

Architects and designers specify rapidly renewable materials are those that regenerate more quickly than their level of demand. Our goal is to reduce the use and depletion of finite raw materials and long-cycle renewable materials by replacing them with rapidly renewable ones.  Some commonly specified rapidly renewable materials include cork, bamboo, cotton batt insulation, linoleum flooring, sunflower seed board panels, wheat-board cabinetry, wool carpeting, cork flooring, bio-based paints, geotextile fabrics such as coir and jute, soy-based insulation and form-release agent and straw bales. Some green building materials products are made of a merger of rapidly renewable materials and recycled content such as newsprint, cotton, soy-based materials, seed husks, etc.

Check out this ILMA article about “Materiality and Green Architecture: The Effect of Building Materials on Sustainability and Design” for more information on this topic.

Responsibility of Architects

Architects and designers who align with AIA’s COTE objectives, (1) recognize the value of their role in environmental leadership to advance the importance of sustainable design to the general public while incorporating sustainable design into their daily practice, (2) influence the direction of architectural education to place more emphasis on ecological literacy, sustainable design and building science, (3) communicate the AIA’s environmental and energy-related concerns to the public and private sectors and influence the decisions of the public, professionals, clients, and public officials on the impact of their environmental and energy-related decisions, (4) educate other architects on regulatory, performance, technical and building science issues and how those issues influence architecture, (5) educate the architectural profession on programming, designing, and managing building performance, (6) investigate and disseminate information regarding building performance best practices, criteria, measurement methods, planning tools, occupant-comfort, heat/air/moisture interfaces between the interior and exterior of buildings, (7) promote a more integrated practice in order to achieve environmentally and economically efficient buildings. One of the tools we will plan to promote to achieve this integration is Building Information Technology (BIM).

Smart-Building

The Role of Technology & Innovation – A Case Study (“The Edge”)

PLP Architecture and the Developer OVG Real Estate, built “The Edge” is a 430,556 SF (40,000m²) office building in the Zuidas business district in Amsterdam. It was designed for the global financial firm and main tenant, Deloitte. The project aimed to consolidate Deloitte’s employees from multiple buildings throughout the city into a single environment, and to create a ‘smart building’ to act as a catalyst for Deloitte’s transition into the digital age.

They key features of this building include the following innovations which address the environmental impact of building such a large edifice:

  • Each facade is uniquely detailed according to its orientation and purpose.
    • Load bearing walls to the south, east and west have smaller openings to provide thermal mass and shading, and solid openable panels for ventilation.
    • Louvers on the south facades are designed according to sun angles and provide additional shading for the office spaces, reducing solar heat gain.
    • Solar panels on the south facade provide enough sustainable electricity to power all smartphones, laptops and electric cars.
    • The North facades are highly transparent and use thicker glass to dampen noise from the motorway.
    • The Atrium façade is totally transparent, allowing views out over the dyke, and steady north light in.
  • The building’s Ethernet-powered LED lighting system is integrated with 30,000 sensors to continuously measure occupancy, movement, lighting levels, humidity and temperature, allowing it to automatically adjust energy use.
  • 65,000 SF of solar panels are located on the facades and roof, and remotely on the roofs of buildings of the University of Amsterdam – thereby making use of neighborhood level energy sourcing.
  • The atrium acts as a buffer between the workspace and the external environment. Excess ventilation air from the offices is used again to air condition the atrium space. The air is then ventilated back out through the top of the atrium where it passes through a heat exchanger to make use of any warmth.
  • Rain water is collected on the roof and used to flush toilets and irrigate the green terraces in the atrium and other garden areas surrounding the building.
  • Two thermal energy wells reach down to an aquifer, allowing thermal energy differentials to be stored deep underground.
  • In The Edge a new LED-lighting system has been co-developed with Philips. The Light over Ethernet (LoE) LED system is powered by Ethernet and 100% IP based. This makes the system (i.e. each luminaire individually) computer controllable, so that changes can be implemented quickly and easily without opening suspended ceilings. The luminaires are furthermore equipped with Philips’ ‘coded-light’ system allowing for a highly precise localization via smartphone down to 8 inches (20 cm) accuracy, much more precise than known WiFi or beacon systems.
  • Around 6,000 of these luminaires were placed in The Edge with every second luminaire being equipped with an additional multi-sensor to detect movement, light, infrared and temperature.
  • The Philips LoE LED system was used in all office spaces to reduce the energy requirement by around 50% compared to conventional TL-5 Lighting. Via the LoE system daily building use can be monitored. This data is fed to facility managers via the BMS allowing:
    • Remote insight into the presence of people in the building (anonymous). Heating, cooling, fresh air and lighting are fully IoT (Internet of Things) integrated and BMS controlled per 200 sqft based on occupancy – with zero occupancy there is next-to-zero energy use.
    • Predictions of occupancy at lunchtime based on real time historical data and traffic and weather information to avoid food-waste.
    • Unused rooms to be skipped for cleaning.
    • Managers to be alerted to lights that need replacing.
    • Notification of printers needing paper.
  • Every employee is connected to the building via an app on their smartphone. Using the app they can find parking spaces, free desks or other colleagues, report issues to the facilities team, or even navigate within the building.
  • Employees can customize the temperature and light levels anywhere they choose to work in the building via the mobile app. The app remembers how they like their coffee, and tracks their energy use so they’re aware of it.
  • The vast amount of data generated by the building’s digital systems and the mobile app on everything from energy use to working patterns, has huge potential for informing not only Deloitte’s own operations, but also our understanding of working environments as a whole. Discussions are currently ongoing regarding the future of this data and its use for research and knowledge transfer.
  • The green space that separates the building from the nearby motorway acts as an ecological corridor, allowing animals and insects cross the site safely.

Conclusion

Because buildings account for nearly 40 percent of global energy consumption, architects and designers have been working to impact the built environment in a positive way.  Although not every project can be as green as The Edge, by selecting materials that are renewable while reducing energy are two big contributions we can make to help ease the increasing demand for construction.

Technology can play a big part in our role to design more sustainable buildings through the use of building information modeling, energy management software, building management software, online sustainability calculators, energy modeling software, new lighting innovations, new techniques to capture and deliver energy and clean water while reducing waste, and mobile applications utilizing IoT.

Sources:

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook

 


NEW @FC3ARCHITECT RESIDENCE ON THE BOARDS – From Cape Cod to Center Hall Colonial

The latest designs for this new expanded home consist of a modern spin on a center hall colonial.  We achieve this by expanding the existing cape cod residence on the right side and the rear of the home.  New master bedroom suite and bedrooms are on the new second floor.   The new addition allows us to re-position the stairs to create a center hall.  The front of the home remains traditional with formal living and dining spaces on each side of the hall.  Access to the great room and new kitchen is provided through pocket doors.  The new kitchen will boost a built in breakfast nook and double-island design while the great room boosts a gas-fired fireplace.

SITE-PLAN-RENDER

1864 - Bisset 332 Oak Avenue Woodbridge NJ EX-PHOTO-02EXISTING RESIDENCE

FIRST-FLOOR-RENDER-013-D RENDERING OF FIRST FLOOR

FIRST-FLOOR-RENDER-023-D RENDERING OF FIRST FLOOR

FIRST-FLOOR-RENDER-033-D RENDERING OF FIRST FLOOR

SECOND-FLOOR-RENDER-013-D RENDERING OF SECOND FLOOR

SECOND-FLOOR-RENDER-023-D RENDERING OF SECOND FLOOR

SECOND-FLOOR-RENDER-033-D RENDERING OF SECOND FLOOREXTERIOR-RENDER-013-D RENDERING OF EXTERIOR

EXTERIOR-RENDER-023-D RENDERING OF EXTERIOREXTERIOR-RENDER-033-D RENDERING OF EXTERIOR

EXTERIOR-ELEV-RENDER-01PROPOSED FRONT ELEVATION

EXTERIOR-ELEV-RENDER-02PROPOSED RIGHT ELEVATION

EXTERIOR-ELEV-RENDER-03PROPOSED LEFT ELEVATION

EXTERIOR-ELEV-RENDER-04PROPOSED RIGHT ELEVATION

We would love to hear from you about what you think about this project. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


NEW @FC3ARCHITECT RESIDENCE ON THE BOARDS – From Plain Saltbox to Mediterranean-Style Residence

The latest designs for this new expanded home consist of a modern spin on a Mediterranean-style county home with spanish tile roof.  We achieve this by expanding the existing two-story home to the left of the existing garage and the the entrance of the existing home.  Updated second floor layouts allow for outdoor living space over the new garage addition. The new front addition boosts a new curved staircase connecting the main level living space with the bedroom spaces above.  A new foyer and dining room is created reusing existing rooms in the house.  The interior will elaborate on the theme by integrating curved archways and stone details.  The front facade was designed with order in mind – arches and columns provide rhythm and elegance for this new home.  The client opted for cast iron railings both inside and outside.

CONCEPTUAL-RESIDENCE-PROPOSED-00CONCEPTUAL-RESIDENCE-PROPOSED-03CONCEPTUAL-RESIDENCE-PROPOSED-04CONCEPTUAL-RESIDENCE-PROPOSED-12CONCEPTUAL-RESIDENCE-PROPOSED-08CONCEPTUAL-RESIDENCE-PROPOSED-09CONCEPTUAL-RESIDENCE-PROPOSED-10CONCEPTUAL-RESIDENCE-PROPOSED-07CONCEPTUAL-RESIDENCE- PROPOSED-06CONCEPTUAL-RESIDENCE-PROPOSED-05

We would love to hear from you about what you think about this project. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


History of Architecture

Jacqueline Gargus is a professor of architecture at the Knowlton School. Educated at Wellesley College and the University of Pennsylvania, she joined the Knowlton School faculty in 1988. She has also taught at the Harvard Graduate School of Design and has been a Senior Research Fellow at the Bauhaus Universität, Weimar, and the Technical University of Vienna. She is the author of Ideas of Order: A Formal Approach to Architecture (Kendall Hunt, 1994) and the multimedia digital video textbook, Architectural History 1, produced by iTunes University. Her most recent book is Architecture Guide: China (2016), co-authored with Evan Chakroff and Addison Godel.

Follow this link for access to over 40 youtube videos that take you from antiquity through mid-1800’s.

History of Architecture Youtube Playlist

If you just cannot get enough (like me) click here for another 100 episodes: iTunes History of Architecture Course

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What is the Thinking Hand in Architecture (and why we, as architects, must defend the natural slowness and diversity of experience) #ilmaBlog #Discourse #Theory #Architecture #Design

ILMA The Thinking Hand 01

2009 Book, The Thinking Hand written byArchitect Juhani Pallasmaa

In The Thinking Hand, Architect Juhani Pallasmaa reveals the miraculous potential of the human hand. He shows how the pencil in the hand of the artist or architect becomes the bridge between the imagining mind and the emerging image. The book surveys the multiple essences of the hand, its biological evolution and its role in the shaping of culture, highlighting how the hand–tool union and eye–hand–mind fusion are essential for dexterity and how ultimately the body and the senses play a crucial role in memory and creative work. Pallasmaa here continues the exploration begun in his classic work The Eyes of the Skin by further investigating the interplay of emotion and imagination, intelligence and making, theory and life, once again redefining the task of art and architecture through well-grounded human truths.

Pallasmaa notes that, “…architecture provides our most important existential icons by which we can understand both our culture and ourselves. Architecture is an art form of the eye, the hand, the head and the heart. The practice of architecture calls for the eye in the sense of requiring precise and perceptive observation. It requires the skills of the hand, which must be understood as an active instrument of processing ideas in the Heideggeran sense. As architecture is an art of constructing and physical making, its processes and origins are essential ingredients of its very expression…”

Linking art and architecture he continues, “…as today’s consumer, media and information culture increasingly manipulate the human mind through thematized environments, commercial conditioning and benumbing entertainment, art has the mission to defend the autonomy of individual experience and provide an existential ground for the human condition. One of the primary tasks of art is to safeguard the authenticity and independence of human experience.”

Pallasmaa asserts that,

“Confidence in future architecture must be based on the knowledge of its specific task; architects need to set themselves tasks that no one else knows how to imagine. Existential meanings of inhabiting space can be articulated by the art of architecture alone. Thus architecture continues to have a great human task in mediating between the world and ourselves and in providing a horizon of understanding in the human existential condition.

The task of architecture is to maintain the differentiation and hierarchical and qualitative articulation of existential space. Instead of participating in the process of further speeding up the experience of the world, architecture has to slow down experience, halt time, and defend the natural slowness and diversity of experience. Architecture must defend us against excessive exposure, noise and communication. Finally, the task of architecture is to maintain and defend silence. The duty of architecture and art is to survey ideals and new modes of perception and experience, and thus open up and widen the boundaries of our lived world.”

(Source: https://www.wiley.com/en-us/The+Thinking+Hand%3A+Existential+and+Embodied+Wisdom+in+Architecture-p-9780470779293)

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends.

Feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


The History of Western Architecture in Photos

This slideshow requires JavaScript.

Happy Friday and enjoy the brief history lesson!

Prehistoric Times: Stonehenge in Amesbury, United Kingdom
Jason Hawkes/Getty Images

Ancient Egypt: The Pyramid of Khafre (Chephren) in Giza, Egypt
Lansbricae (Luis Leclere)/Getty Images (cropped)

Classical: The Pantheon, Rome
Werner Forman Archive/Heritage Images/Getty Images (cropped)

Byzantine: Church of Hagia Eirene, Istanbul, Turkey
Salvator Barki/Getty Images (cropped)

Romanesque: Basilica of St. Sernin, Toulouse, France
Anger O./AgenceImages courtesy Getty Images

Gothic: Notre Dame de Chartres, France
Alessandro Vannini/Getty Images (cropped)

Renaissance: Villa Rotonda (Villa Almerico-Capra), near Venice, Italy
Massimo Maria Canevarolo via Wikimedia Commons

Baroque: Palace of Versailles, France
Loop Images Tiara Anggamulia/Getty Images (cropped)

Rococo: Catherine Palace near Saint Petersburg, Russia
Sean Gallup/Getty Images

Neoclassicism: The U.S. Capitol in Washington, D.C.
Architect of the Capitol

Art Nouveau: Hôtel Lutetia, 1910, Paris, France
Justin Lorget/chesnot/Corbis via Getty Images

Beaux Arts: The Paris Opéra, Paris, France
Francisco Andrade/Getty Images (cropped)

Neo-Gothic: The 1924 Tribune Tower in Chicago
Glowimage/Getty Images (cropped)

Art Deco: The 1930 Chrysler Building in New York City
CreativeDream/Getty Images

Modernism: De La Warr Pavilion, 1935, Bexhill on Sea, East Sussex, U.K.
Peter Thompson Heritage Images/Getty Images

Postmodernism: Celebration Place, Celebration, Florida
Jackie Craven

Neo-Modernism and Parametricism: Heydar Aliyev Centre, 2012, Baku, Azerbaijan
Christopher Lee/Getty Images

Prehistoric to Parametric: Prehistoric Stonehenge (left) and Moshe Safdie’s 2011 Marina Bay Sands Resort in Singapore (right)
Left: Grant Faint / Right: photo by William Cho

(Source: Craven, Jackie. “Architecture Timeline – Western Influences on Building Design.” ThoughtCo, Apr. 21, 2018, thoughtco.com/architecture-timeline-historic-periods-styles-175996)

We would love to hear from you about what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook


What is the Role of the Architect in the Future of AR Design?

Never before in the modern history of technology has the architect, the designer, been a more important part of technology’s future. Architects have been curating and ideating on the development of ‘place’ for centuries. Gensler covers how they are leveraging AR in the coverage of AI, the Internet of Things, and Cloud computing, and how to design places using game engine technology.

Speaker: Alan Robles of Gensler

Over 24 years exploring the relationship between users and their surroundings, Alan’s been creating experience environments for clients and projects of every scale around the world. In his role at Gensler he explores the opportunities found at the fringes of the design practice, searching for the edges of the play space of each design opportunity.

(Source: bit.ly/visionsummit17)

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,

FRANK CUNHA III
I Love My Architect – Facebook