CELS Earns Honorable Mention Among @USGBCNJ Gala Award Winners – 2019

NEWS – The U.S. Green Building Council New Jersey Chapter (USGBC NJ) celebrated nine New Jersey-based projects at its Annual Awards Gala. The Gala took place on Wednesday, May 22, 2019 at the LEED registered Hyatt Regency, New Brunswick, NJ.

Each year, USGBC NJ recognizes and presents these distinguished awards to companies and individuals that have demonstrated outstanding achievement and best practices in green building and sustainability.

“The Annual Awards Gala is a stellar event,” said USGBC NJ Board Chair Daniel Topping, Principal with NK Architects. “It is our opportunity to celebrate innovative green New Jersey projects, while networking and financially supporting the mission of USGBC NJ. This year’s winners are exciting and inspiring. They range from corporate campuses, higher education facilities, sustainably built residential projects, a comprehensive green cleaning initiative and an urban resiliency park.”

This year, USGBC NJ’s Gala celebrated the following Award Winners (click for list of winners).

Honorable Mention

Included as an honorable mention was the Center for Environmental and Life Sciences (CELS) facility, a 107,500 square foot, LEED® Gold–certified science facility devoted to environmental and pharmaceutical life sciences research.  CELS enables Montclair State University’s College of Science and Mathematics (CSAM) to build on its collaborative culture combining strengths across disciplines and building research programs of exceptional power. In the process, Montclair State University demonstrates that it can make a large impact on the advancement of science and technology, especially in the sustainable use of natural resources and improved human health. The building comprises of a comprehensive array of laboratories, seminar rooms, classrooms, and other facilities that enable collaborative transdisciplinary research in the pharmaceutical life sciences and environmental sciences. It joins three existing science buildings around a “learning and discovery landscape” to give science research a high-visibility position on the campus.

The Project Team

  • Montclair State University Project Manager: Frank Cunha III, AIA
  • Architect of Record: The S/L/A/M Collaborative, Inc.
  • Engineer of Record: Vanderweil Engineers
  • Contractor: Terminal Construction Corporation
  • LEED Consultant: Green Building Center – New Jersey
  • Commissioning Agent: NORESCO

Some of the LEED-specific features include:

  • Both bus and rail transportation options within a half-mile walking distance.
  • The building is situated on an area that was previously developed.
  • The site is near to basic services such as places of worship, a convenience store, day care center, library, park, police department, school, restaurants, theaters, community center, fitness center, and museums.
  • A green roof with sedum mats is located above the second floor. This absorbs stormwater, restores habitat, adds insulation to the building roof, and provides a scenic study site and retreat for building occupants.
  • Exterior landscaping includes water efficient plantings and two rain gardens in front of the building.
  • A 35 percent reduction of water use in flush & flow fixtures.
  • Separate collection of refuse and recyclables with color-coded storage containers to avoid contamination of the waste stream.
  • Smoking is prohibited in the building and within 25 feet of entries, outdoor intakes and operable windows.
  • The building is mechanically ventilated with CO2 sensors programmed to generate an alarm when the conditions vary by 10 percent or more from the design value.
  • The design outdoor air intake flow for all zones is 30 percent greater than the minimum outdoor air ventilation rate required by ASHRAE Standard 62.1-2007, Ventilation Rate Procedure.
  • Lighting controls include scene controllers and occupancy sensors for classrooms, conference rooms and open plan workstations, with task lighting provided.

Further reading about the facility:

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


High Performance Building Design

Green-Building

970 Denny, a residential high-rise under construction in South Lake Union, used early energy modeling to demonstrate that efficiency from the water source heat pump system would offset increased thermal loss from expansive glazing.

The Federal EPA has implemented several strategies to enhance sustainability, including:

  • Conducting retro-commissioning and re-commissioning to improve energy performance
  • Using the most efficient heating, ventilation and air conditioning equipment and lighting
  • Assessing for compliance with ventilation and thermal comfort standards
  • Installing renewable energy systems
  • Replacing plumbing fixtures with higher efficiency models
  • Installing advanced energy and water meters
  • Reducing irrigated landscape areas
  • Retrofitting buildings and landscapes with low impact development features
  • Using integrated pest management techniques
  • Contracting green cleaning services
  • Purchasing environmentally preferable materials
  • Implementing materials reduction, reuse, recycling and composting programs

Airtight construction controls the transfer of heat and moisture into and through the building envelope. Thermal bridge-free assemblies avoid the envelope penetrations that sap buildings of energy, comfort, and durability. Continuous insulation keeps heat where it’s wanted. Excellent windows and doors limit heat loss while capturing daylight and passive solar energy. Shading elements shield the building from passive solar gains when unwanted. And a constant supply of filtered fresh air comes in through a balanced heat recovery (or energy recovery) ventilation system that recaptures the thermal energy of exhaust air and keeps it inside the building. “Envelope-first” focus design consideration dramatically reduces the energy demand to heat and cool high-performance building. In fact, Passive House buildings routinely reduce heating and cooling energy by up to 90%.

(Source: https://hammerandhand.com/field-notes/what-is-high-performance-building)

Green-Building-WorldThe research will further build on the results of the Well Living Lab’s latest study findings, published in Building and Environment. The study found that temperature, noise, and lighting in open office environments affect employees’ ability to get work done. This was a proof-of concept study that demonstrated the strength of living lab methodology in measuring realistic occupant responses to select environmental changes in an open office. Specifically, it indicated that employees are most sensitive to thermal conditions, followed by work-related noise such as conversations and lack of natural light from windows when working in open office environments. These factors affected work environment satisfaction, productivity, and even carried over into the mood of employees and their sleep.

(Source: https://facilityexecutive.com/2018/03/indoor-environments-impact-on-wellness-to-be-studied)

Further Reading:

Goining-Green-QuestionWe would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook


New Computer Science Facility for College of Science & Mathematics

Higher-Ed-Comp-Sci-001Higher-Ed-Comp-Sci-004Higher-Ed-Comp-Sci-002Higher-Ed-Comp-Sci-000

Higher-Ed-Comp-Sci-000-DHigher-Ed-Comp-Sci-000-CHigher-Ed-Comp-Sci-000-BHigher-Ed-Comp-Sci-000-AHigher-Ed-Comp-Sci-007Higher-Ed-Comp-Sci-005Higher-Ed-Comp-Sci-008Higher-Ed-Comp-Sci-014Higher-Ed-Comp-Sci-009Higher-Ed-Comp-Sci-013Higher-Ed-Comp-Sci-010Higher-Ed-Comp-Sci-006Higher-Ed-Comp-Sci-012Higher-Ed-Comp-Sci-003Higher-Ed-Comp-Sci-011Higher-Ed-Comp-Sci-015Higher-Ed-Comp-Sci-016

Mallory Hall, a 52-year-old, three-story, 34,400 GSF facility, is being renovated primarily for Computer Science instructional and research programs. The renovation will include a new addition to the building in the form of an additional floor resulting in a four-story 43,800 GSF facility. This renovation include space for offices, meeting rooms, classrooms, teaching and research labs and two specialized centers (Cyber Security/Forensics and Data Science) for public events and teaching forums. The building will also be life cycle renovated to include a new heating and cooling system, plumbing and electrical upgrades, life safety systems replacement, environmental systems remediation, new flooring, ceilings, and walls, and a new exterior façade and roof system. The building has been designed to implement sustainable features including very energy efficient lighting, lighting controls, low-flow plumbing fixtures and state of the art mechanical systems. Mallory Hall is currently under construction.

Project Team:
Client: Montclair State University, College of Science & Mathematics
Project Manager: Chris Danish
Owner’s Representative: Frank Cunha III, AIA, University Architect
Architect of Record: Clarke Caton Hintz
Contractor: Delric Construction
AV Integrator: Sony Corporation
Telecommunication: Commercial Technology Contractors, Inc.
Photographer: Mike Peters


What Can Architects Do To Design Safer Classrooms For Our Children? Part 4: Safety Guidelines For Schools

ILMA Classroom 11.pngPhoto Source: The National Association of School Psychologists (NASP)

The Following is Based on the Final Report of the Sandy Hook Advisory Commission

School Site Perimeter Standards

  1. Crime Prevention Through Environmental Design (CPTED) is a crime prevention strategy that uses architectural design, landscape planning, security systems, and visual surveillance to create a potentially crime free environment by influencing human behavior and should be applied when appropriate.
  2. Fencing, landscaping, edge treatment, bollards, signage, exterior furnishings and exterior lighting may be used to establish territorial boundaries and clearly delineate areas of public, semi-public, semi-private, and private space.

Access Control

  1. School boundaries and property lines shall be clearly demarcated to control access to a school facility and shall clearly delineate areas of public, semi-public, semi-private, and private space.
  2. Where a school is a shared use facility that serves the community, internal boundaries shall be clearly defined to establish a distinct perimeter for both the school and the shared use facilities with separate and secure access points that are clearly defined. Boundaries may be defined by installing fencing, signage, edge treatment, landscaping, and ground surface treatment.
  3. The number of vehicle and pedestrian access points to school property shall be kept to a minimum and shall be clearly designated as such.
  4. Directional signage shall be installed at primary points of entry to control pedestrian and vehicular access and to clearly delineate vehicular and pedestrian traffic routes, loading/unloading zones, parking and delivery areas. Signage should be simple and have the necessary level of clarity. Signage should have reflective or lighted markings.
  5. A means shall be provided to achieve and enforce identity authentication and entry authorization at locations and areas established by school operations protocols.

Surveillance

  1. The design shall allow for the monitoring of points of entry/egress by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. At minimum, electronic surveillance shall be used at the primary access points to the site for both pedestrian and vehicular traffic.
  3. All points of vehicular entry/egress shall be adequately illuminated to enhance visibility for purposes of surveillance.
  4. Designated pedestrian and vehicular traffic routes shall be adequately illuminated to reinforce natural and or electronic surveillance during evening hours.
  5. Locate access points in areas of high visibility that can be easily observed and monitored by staff and students in the course of their normal activities. Natural surveillance may be maximized by controlling access points that clearly demarcate boundaries and spaces.
  6. Video surveillance systems may be used around the site perimeter to provide views of points of entry/egress and as a means to securely monitor an area when natural surveillance is not available.
  7. Lighting should be sufficient to illuminate potential areas of concealment, enhance observation, and to provide for the safety of individuals moving between adjacent parking areas, streets and around the school facility.
  8. Consider the design of video surveillance systems which have the ability to be used locally (on site) by emergency responders and viewed off-site at appropriate locations.

Parking Areas and Vehicular and Pedestrian Routes

  1. At the minimum, electronic surveillance shall be used at the primary access points to the site for both pedestrian and vehicular traffic.
  2. Designated pedestrian and vehicular points of entry/egress and traffic routes shall be adequately illuminated to reinforce natural and or electronic surveillance.
  3. Signage shall be posted at all vehicular access points and in delivery zones, parking areas and bus loading/unloading zones with rules as to who is allowed to use parking facilities and when they are allowed to do so. Signage should be simple and have the necessary level of clarity. Signage should have reflective or lighted markings.
  4. Parking areas shall be adequately illuminated with vandal resistant lighting.
  5. Parking shall be prohibited under or within the school building.
  6. Adequate lighting shall be provided at site entry locations, roadways, parking lots, and walkways from parking to buildings.
  7. Gas service rooms, exterior meters/regulators shall be secured.
  8. External access to school facilities shall be kept to a limited number of controlled entrances. Vehicular circulation routes shall be separated and kept to a minimum of two routes per project site for purposes of separating service and delivery areas from visitors‘ entry, bus drop-off, student parking and staff parking. Circulation routes shall be separated, clearly demarcated, and easily supervised. Provide vehicle interdiction devices at building entries to preclude vehicle access into the building.
  9. A drop-off/pick-up lane shall be designated for buses only with a dedicated loading and unloading zone designed to adequately allow for natural and/or electronic surveillance and to avoid overcrowding and accidents.
  10. Design entry roads so that vehicles do not have a straight-line approach to the main building. Use speed-calming features to keep vehicles from gaining enough speed to penetrate barriers. Speed-calming features may include, but are not limited to, speed bumps, safety islands, differing pavement surfaces, landscape buffers, exterior furnishings and light fixtures.
  11. Signage text should prevent confusion over site circulation, parking, and entrance location. Unless otherwise required, signs should not identify sensitive or high risk areas. However, signs should be erected to indicate areas of restricted admittance and use of video surveillance.
  12. Parking areas should be designed in locations that promote natural surveillance. Parking should be located within view from the occupied building, while maintaining the maximum stand-off distance possible.
  13. Locate visitor parking in areas that provide the fewest security risks to school personnel. The distance at which a potentially threatening vehicle can park in relation to school grounds and buildings should be controlled.
  14. Consider illuminating areas where recreational activities and other nontraditional uses of the building occur. If video surveillance systems are installed, adequate illumination shall be designed to accommodate it.
  15. Consider blue light emergency phones with a duress alarm in all parking areas and athletic fields. If utilized, blue light emergency phones shall be clearly visible, readily accessible and adequately illuminated to accommodate electronic surveillance.
  16. Review vehicle access routes to the school and the site civil design with emergency responders to address their incident response requirements.
  17. Design walkways from all parking areas so that they can be observed from within the school by appropriate school staff.

Recreational Areas – Playgrounds, Athletic Areas, Multipurpose Fields

  1. The design shall allow for ground level, unobstructed views, for natural and/or electronic surveillance of all outdoor athletic areas, playgrounds and recreation areas at all times.
  2. Pre-kindergarten and kindergarten play areas shall be separated from play areas designed for other students and physically secured.
  3. Athletic areas and multipurpose fields at elementary school buildings shall contain a physical protective barrier to control access and protect the area.
  4. Playgrounds and other student gathering areas shall be located away from public vehicle access areas, such as streets or parking lots by a minimum of fifty (50) feet unless prohibited by site constraints.
  5. Consider a physical protective barrier around athletic areas and multipurpose fields at secondary school buildings to control access and protect the area.
  6. Locate access points to recreational areas in areas of high visibility that can be easily observed and monitored by staff and students in the course of their normal activities. Natural surveillance may be maximized by controlling access points that clearly demarcate boundaries and spaces.
  7. Pre-K and K play areas should be designed so that they have visual sight-lines to school staff. Fencing should not diminish this visual connection.
  8. Review the design of these areas with emergency responders to address their incident response requirements.

Communication Systems

  1. All classrooms shall have two way communications with the administrative office.
  2. All communication systems shall be installed in compliance with state building and fire code requirements.
  3. Emergency Communication Systems (ECS) and/or alarm systems shall have redundant means to notify first responders, supporting agencies, public safety officials and others of an event to allow for effective response and incident management. Alarm systems must be compatible with the municipal systems in place. These systems may include radio, electronic, wireless or multimedia technology which provides real time information (such as audio, visual, mapping and relevant data) directly to first responders. Points of Broadcast input for these systems shall be reviewed with emergency responders.  A minimum of 2 shall be provided.
  4. Emergency Communication Systems (ECS) shall be installed and maintained in accordance with NFPA 72, 2010, or the most current fire code standard adopted by the local/state construction code authority. ECS may include but is not limited to public address (PA) systems, intercoms, loudspeakers, sirens, strobes, SMS text alert systems, and other emerging interoperable resource sharing communication platforms. The design of these systems shall be reviewed with emergency responders.
  5. All new buildings shall have approved radio coverage for first responders within the building based upon the existing coverage levels of communication systems at the exterior of the building. The system as installed must comply with all applicable sections of the Federal Communication Commission (FCC) Rules for Communication Systems and shall coordinate with the downlink and uplink pass band frequencies of the respective first responders. Perform a radio audibility and intelligibility test and modify system design accordingly.
  6. All in-building radio systems shall be compatible with systems used by local first responders at the time of installation.
  7. Call buttons with direct intercom communication to the central administrative office and/or security office should be installed at key public contact areas.
  8. Develop a strategy and “security team” and equip them with hand-held radios so they can be effective participants in the radio communications system.

School Building Exterior – Points of Entry/Egress and Accessibility

  1. Points of entry/egress shall be designed to allow for monitoring by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. At minimum electronic surveillance shall be used at the primary points of entry.
  3. Lighting shall be sufficient to adequately illuminate potential areas of concealment and points of building entry, and, enhance natural and/or electronic surveillance, and discourage vandalism.
  4. Consider blue light emergency phones with a duress alarm along the building perimeter as needed to enhance security. If utilized, blue light emergency phones shall be clearly visible, readily accessible and adequately illuminated to accommodate electronic surveillance.
  5. Consider the use of forced entry resistance glazing materials for windows and glazed doors using laminated glass and/or polycarbonate to significantly improve forced entry delay time beyond standard glazing techniques. A five (5) minute forced entry solution should be the design standard.

Main Entrance / Administrative Offices / Lobby

  1. Main entrances shall be well lit and unobstructed to allow for natural and/or electronic surveillance at all times.
  2. The design shall allow for visitors to be guided to a single control point for entry.
  3. The main entrance assembly (glazing, frame, & door) shall be forced entry resistant to the project standard, with a forced entry time rating as informed by local law enforcement response timing.
  4. Plans shall carefully address the extent to which glazing is used in primary entry ways, areas of high risk and areas of high traffic and the degree to which glazing is installed or treated to be bullet, blast, or shatter resistant to enhance the level of security. The district‘s priorities for the use of natural surveillance, electronic surveillance, natural light and other related security measures may affect this decision and the overall level of security.
  5. Main entrance doors shall be capable of being secured from a central location, such as the central administrative office and/or the school security office.
  6. Video surveillance cameras shall be installed in such a manner to show who enters and leaves the building and shall be monitored at locations which are attended whenever the school is occupied.
  7. The design shall allow for providing visitor accessibility only after proper identification.
  8. The use of vestibules with forced entry resistant doors and glazing to the project standard should be the design standard.
  9. The central administrative offices and/or security offices should have an unobstructed view of the main entrance lobby doors and hallways. If feasible, administrative offices abutting the main entrance should be on an exterior wall with windows for natural surveillance of visitor parking, drop off areas, and exterior routes leading to the main entrance.
  10. Walls, forced entry resistant to the project standard, should be hardened in foyers and public entries. Interior and exterior vestibule doors should be offset from each other in airlock configuration.
  11. Use vestibules to increase security. The entrance vestibule shall have both interior and exterior doors that are lockable and controllable from a remote location and be designed to achieved enhanced force entry performance as identified to the project forced entry standards.
  12. When possible, the design should force visitors to pass directly through a screening area prior to entering or leaving the school. The screening area should be an entrance vestibule, the administration/reception area, a lobby check in station, an entry kiosk, or some other controlled area. This controlled entrance should serve as the primary control point between the main entrance and all other areas of the school.
  13. Control visitor access through electronic surveillance with intercom audio and remote lock release capability at the visitor entrance.
  1. Restrict visitor access during normal hours of operation to the primary entrance. If school buildings require multiple entry points, regulate those entry points with no access to people without proper identity authentication and entry authorization. Consider an electronic access control system for authorized persons if multiple entry points are utilized during normal hours of operation.
  2. Install a panic/duress alarm or call button at an administrative/security desk as a protective measure.
  3. Proximity cards, keys, key fobs, coded entries, or other devices may be used for access control of students and staff during normal hours of operation. The system may be local (residing in the door hardware) or global (building or district- wide). Prior to installing a customized door access control system refer to the local authority having jurisdiction for compliance with state building and fire code.
  4. Consider sensors that alert administrative offices when exterior doors at all primary and secondary points of entry are left open.
  5. Consider radio frequency access control devices at primary points of entry to allow rapid entry by emergency responders. Review this technology with the emergency responders which serve the school facility.
  6. Where “forced entry” required construction is required, the forced entry delay time shall be based on the ERTA, and have the forced entry designs informed/validated by a licensed architect, professional engineer or qualified security consultant.
  7. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.

Exterior Doors

  1. The design shall allow for the points of entry/egress to be monitored by natural and/or electronic surveillance during normal hours of operation and during special events.
  2. Lighting at these entry points shall be sufficient to illuminate potential areas of concealment, enhance natural and/or electronic surveillance, discourage and protect against vandalism.
  3. Tertiary exterior doors shall be hardened to be penetration resistant and burglar resistant.
  4. All exterior doors shall be equipped with hardware capable of implementing a full perimeter lockdown by manual or electronic means and shall be numbered per the SSIC standards.
  5. All exterior doors shall be easy to lock and allow for quick release in the event of an emergency by authorized personnel and emergency responders.
  6. All exterior doors that allow access to the interior of the school shall be numbered in sequential order in a clockwise manner starting with the main entrance. All numbers shall be visible from the street or closest point of entry/egress, contrast with its background and be retro-reflective.
  7. Doors vulnerable to unauthorized access may be monitored by adding door contacts or sensors, or may be secured through the use of other protective measures, such as delayed opening devices, or video surveillance cameras that are available for viewing from a central location, such as the central administrative office and/or security office.
  8. Specify high security keys and cylinders to prove access control.
  9. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.

Exterior Windows/Glazing/Films

  1. Windows may serve as a secondary means of egress in case of emergency. Any “rescue window” with a window latching device shall be capable of being operated from not more than forty-eight (48) inches above the finished floor.
  2. Each classroom having exterior windows shall have the classroom number affixed to the upper right-hand corner of the first and last window of the corresponding classroom. The numbers shall be reflective, with contrasting background and shall be readable from the ground plain at a minimum distance of fifty (50) feet.
  3. Plans shall carefully address the extent to which glazing is used in primary entry ways, areas of high risk and areas of high traffic and the degree to which glazing is installed or treated to be bullet, blast, or shatter resistant to enhance the level of security. The district‘s priorities for the use of natural surveillance, electronic surveillance, natural light and other related security measures may affect this decision and the overall level of security.
  4. Design windows, framing and anchoring systems to be shatter resistant, burglar resistant, and forced entry resistant to the project forced entry standards, especially in areas of high risk. Whenever feasible, specify force entry resistant glazing on all exterior glazing.
  5. Resistance for glazing may be built into the window or applied with a film or a suitable additional forced entry resistant “storm” window.
  6. Classroom windows should be operable to allow for evacuation in an emergency. Review with the authority having jurisdiction and fire department to balance emergency evacuation, external access, and security requirements.

School Building Interior

  1. Interior physical security measures are a valuable part of a school‘s overall physical security infrastructure. Some physical measures such as doors, locks, and windows deter, prevent or delay an intruder from freely moving throughout a school and from entering areas where students and personnel may be located. Natural and electronic surveillance can assist in locating and identifying a threat and minimizing the time it takes for first responders to neutralize a threat.
  2. The design shall provide for controlled access to classrooms and other areas in the interior that are predominantly used by students during normal hours of operation to protect against intruders.
  3. All interior room numbers shall be coordinated in a uniform room numbering system format. Numbering shall be in sequential order in a clockwise manner starting with the interior door closest to the main point of entry. Interior room number signage shall be wall mounted. Additional room number signage may be ceiling or flag mounted. Interior room number signage specifications and installation shall be in compliance with ADA standards and other applicable regulations as required.
  4. Record documentation drawings shall be kept which include floor plans with the room numbering system. These drawings shall be safeguarded but available for emergency responders. Review opportunities for emergency responders agencies to have these drawings as well.
  5. Review design opportunities to create interior safe havens with forced entry resistant walls and doors. These may be libraries, auditoriums, cafeterias, gyms or portions of school wings or blocks of classrooms.
  6. Establish separate entrance and exit patterns for areas that have concentrated high- volume use, such as cafeterias and corridors, to reduce time required for movement into and out of spaces and to reduce the opportunity for personal conflict. Separation of student traffic flow can help define orderly movement and save time, and an unauthorized user will perceive a greater risk of detection.
  7. Consider intruder doors that automatically lock when an intruder alarm or lockdown is activated to limit intruder accessibility within the building. If installed, intruder doors shall automatically release in the event of an emergency or power outage and must be equipped with a means for law enforcement and other first responders to open as necessary.

Interior Surveillance

  1. An intrusion detection system shall be installed in all school facilities.
  2. If video surveillance systems are utilized, the surveillance system shall be available for viewing from a central location, such as the central administrative office and/or the school security office, and at points of emergency responder incident management. Review these locations with emergency responders in the design phase.
  3. Consider electronic surveillance in lobbies, corridors, hallways, large assembly areas, stairwells or other areas (such as areas of refuge/safe havens) as a means to securely monitor those areas when natural surveillance is not available.
  4. The design of a school facility should allow for the designation of controlled hiding spaces. A controlled hiding place should create a safe place for students and personnel to hide and protect themselves in the event of an emergency. The controlled hiding space should be lockable and readily accessible. A controlled hiding space could be a classroom or some other designated area within the building.
  5. Design interior hallways and adjacent spaces to provide situational awareness of hallway conditions from these rooms, but also provide means to eliminate vision into these rooms as activated by room occupants.

Classroom Security

  1. All classrooms shall be equipped with a communications system to alert administrators in case of emergency. Such communication systems may consist of a push-to-talk button system, an identifiable telephone system, or other means.
  2. Door hardware, handles, locks and thresholds shall be ANSI/BHMA Grade 1.
  3. All classroom doors shall be lockable from the inside without requiring lock activation from the hallway, and door locks shall be tamper resistant.
  4. Classroom door locks shall be easy to lock and allow for quick release in the event of an emergency.
  5. Classroom doors with interior locks shall have the capability of being unlocked/ released from the interior with one motion.
  6. All door locking systems must comply with life safety and state building and fire codes to allow emergency evacuation.
  7. Provide doors between adjacent classrooms to provide means of moving classroom occupants from one classroom to the next as a means to relocate students and teachers from an impending hallway threat. Provide such doors with suitable locking hardware to preclude unauthorized tailgating.
  8. Provide closers on these doors so that they automatically return to a closed, latched, and locked position to preclude unauthorized entry.
  9. If classroom doors are equipped with a sidelight, the glazing should be penetration/forced entry resistant to the project forced entry standard.
  10. If interior windows are installed to provide lines of sight into/out of classrooms or other populated areas, certain factors should be taken into consideration relating to the size, placement and material used for those windows, including:
  11. Minimizing the size of windows or the installation of multiple interspersed smaller windows with barriers in a larger window area to deter intruder accessibility.
  12. Placing windows at a sufficient distance from the interior locking mechanism to prevent or make difficult the opening of a door or lock from outside.
  13. Concealing or obstructing window views to prevent an assailant‘s ability to ascertain the status or presence of persons inside of a classroom during lockdown.
  14. Hardening window frames and glazing to the project forced entry standards to lessen window vulnerability.

Large Assembly Areas (gym, auditorium, cafeteria, or other areas of large assembly)

  1. Points of entrance and egress shall be clearly demarcated and designed to meet the project forced entry standards.
  2. Lighting shall be sufficient to illuminate potential areas of concealment, enhance natural and/or electronic surveillance, discourage vandalism and protect against vandalism.
  3. Electronic surveillance should be used in large assembly areas and at all exit doors to securely monitor those areas when natural surveillance is not available.

Shared Space or Mixed Occupancy (library, BOE, mixed use or other community service)

  1. Shared space shall have separate, secure and controllable entrances.
  2. The design of shared space should prevent unauthorized access to the rest of the school.
  3. The design of shared space shall allow for the monitoring of points of entry/egress by natural and/or electronic surveillance during normal hours of operation.

Roofs

  1. The design shall allow for roof accessibility to authorized personnel only.
  2. Access to the roof should be internal to the building. Roof access hatches shall be locked from the inside.
  3. If external access exists, roof ladders should be removable, retractable, or lockable. Screen walls around equipment or service yards should not provide easy access to the roof or upper windows.
  4. Provide adequate lighting and controls for roof access means and roof access points into the school.

Critical Assets/Utilities

  1. Screens at utilities, such as transformers, gas meters, generators, trash dumpsters, or other equipment shall be designed to minimize concealment opportunities and adequate to preclude unauthorized access. Installation of screens at utilities shall be compliant with utility company requirements.
  2. Access to building operations systems shall be restricted to designated users with locks, keys and/or electronic access controls. Secure all mechanical rooms with intruder detection sensors.
  3. Loading docks shall be designed to keep vehicles from driving into or parking under the facility.
  4. Spaces with critical systems shall be provided appropriate graphics to be recognizable to emergency responders.
  5. Gas meter/regulator rooms shall be provided with forced entry resistant doors and to the project standards.
  6. Gas leak detection systems/sensors shall be installed wherever gas metering or appliances are installed.
  7. Shipping and receiving areas shall be separated from all utility rooms by at least fifty (50) feet unless prohibited by site constraints. If a site is determined to be physically constrained from reasonably meeting the fifty (50) foot separation requirement, maximize the separation distance between the receiving area and the utility room to the greatest extent possible. Utility rooms and service areas include electrical, telephone, data, fire alarm, fire suppression rooms, and mechanical rooms.
  8. Critical building components should be located away from vulnerable areas. Critical building components may include, but are not limited to:
    1. Emergency generator;
    2. Normal fuel storage;
    3. Main switchgear;
    4. Telephone distribution;
    5. Fire pumps;
    6. Building control centers;
    7. Main ventilation systems if critical to building operation.
    8. Elevator machinery and controls.
    9. Shafts for stairs, elevators, and utilities.

Security Infrastructure and Design Strategies

  1. The design shall include special rooms for hazardous supplies that can be locked.
  2. The design shall include secured spaces, closets, cabinets or means of protection to minimize the use of dangerous objects from shop, cooking or other similar occupancies.
  3. Egress stairwells should be located remotely and should not discharge into lobbies, parking or loading areas.
  4. Trash receptacles, dumpsters, mailboxes and other large containers shall be kept at least thirty (30) feet from the building unless prohibited by site constraints. If a site is determined to be physically constrained from reasonably meeting the thirty (30) foot separation requirement, maximize the separation distance to the greatest extent possible.

(Source: Final Report Of The Sandy Hook Advisory Commission)

Look out for our next post about “What Architects Can Do to Design Safer Classrooms for Our Children.”

We would love to hear from you on what you think about this post. We sincerely appreciate all your comments – and – if you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
FRANK CUNHA III
I Love My Architect – Facebook

 


What is a High Performance School?

Ask the Architect


by Frank Cunha III

What is a High Performance School?

A “High Performance School” is a well-designed facility can enhance performance and make education more enjoyable and rewarding. A “High Performance School” is healthy and thermally, visually, and acoustically comfortable. It is also energy, material, and water efficient. A “High Performance School” must be safe and secure; easy to maintain and operate; commissioned; environmentally responsive site. Most of all a “High Performance School” is one that teaches and is a community resource. It should also be stimulating as well as adaptable to changing needs.

Improved Student Performance

Evidence is growing that high performance schools can provide learning environments that lead to improved student performance.  Recent studies show that effective daylighting has contributed to improved student test scores by 10-20%. Intuitively quieter, comfortable classrooms with good lighting and good air quality yield better students/teachers. Low- and no-emission building materials can reduce odors, sensory irritation, and toxicity hazards. Efficient windows also reduce outside noise distractions. Improved heating and cooling systems permit students to hear the teacher better and avoid room temperature swings. Adequate lighting improves students’ ability to read books and see the blackboard. Considerations for “High Performance Schools”include: siting; indoor environmental quality; energy; water; materials; community; faculty and student performance; commissioning; and facilities performance evaluation.

 Siting

Siting is critical for “High Performance Schools” with regards to the environment, energy consumption, and indoor environmental quality, transportation, greenfields, endangered species, wetlands concerns, existing pollution on the site, and stormwater management. A key factor in site design is orientation of the building, which can influence passive heating, natural ventilation, and daylighting. Optimal orientation can reduce year-round heating and cooling costs and optimizes natural lighting. If possible orient buildings so that the majority of windows face either north or south. Strategic placement of vegetation can be used when this orientation cannot be utilized.

Positive affects on the energy and environmental performance of a school include primary consideration for the environmentally sound school building. A school building should complement its environment. Working around existing vegetation to shade building and outside cooling equipment to reduce HVAC load help ensure good environmental performance of school by lowering energy bills and reducing local pollution. Locating a school near public transportation and within walking distance to a majority of students will further reduce energy use, while lowering local traffic and pollution.

Stormwater management is vital to safety and ecological health of a school’s site. Moving stormwater quickly to gutters, downspouts, catch basins, and pipes increases water quantity and velocity requiring large and expensive drainage infrastructure. Water should be captured in cisterns and ponds, or absorbed in groundwater aquifers and vegetated areas. Remaining water runoff should be slowed down and spread across roof and paved surfaces evenly before entering bioswales and creeks. Perforated drainpipe and filters, and “Green” roofs promote water absorption.

“High Performance Schools” promote student safety and security. Visibility of school entrances from main office and general accessibility of the school grounds can affect security. Lighting quality in halls and corridors is also critical.

Indoor environmental quality (IEQ)

“High Performance Schools “ optimize IEQ by considering it throughout the design and construction process. IEQ includes indoor air quality; acoustics; daylighting; lighting quality; and thermal comfort. Benefits include: reduction in student and teacher absences; increase student performance; reduction of illnesses related to indoor toxins; improved teacher retention rates; reduced distractions; improved comfort levels; and maintenance of healthy students, teachers and staff.

Proper siting contributes to positive daylighting potentials and acoustics. Building envelope design affects thermal comfort, daylighting, and indoor air quality. Material choices can also have a positive affect on IEQ. Construction process and the operations and maintenance affect Indoor Air Quality. Key elements of building’s indoor environment affecting occupant comfort and health include: Thermal comfort – temperature, radiant heat, relative humidity, draftiness; light – amount and quality, lack of glare, direct sunlight; noise – levels and kinds, classroom acoustics, inside and outside sources; ventilation, heating & cooling – fresh air intake, re-circulation, exhaust; microbiologic agents – infectious disease, mold, bacteria, allergens; and chemical agents in air or surface dust –volatile organics (formaldehyde), pesticides, lead, asbestos, radon;

Ill health effects associated with poor IEQ can cause students, teachers, and administrative staff to experience a range of acute or chronic symptoms and illnesses including: headaches and fatigue (from VOCs and glare); irritation of eyes, nose, and throat (from VOCs, particles, low relative humidity); respiratory symptoms – allergic reactions (from mold, animal allergens, dust mites); breathing difficulties – increase in asthma symptoms (from allergens, particles, cold); increased transmission rates of colds and flu’s (due to poor ventilation); and poor IEQ can also lead to excessive exposure of classroom occupants to some carcinogens.

Important decisions school designers should pay particular attention to key buildings elements: building materials and surfaces (low-emitting for chemicals); ventilation systems (quiet, efficient filters, adequate fresh air); fenestration (adequate and operable windows); site drainage; envelope flashing and caulking; ande ase of maintenance for building components (e.g., floor cleaning, filter changing).

Common IEQ problems in classrooms include: excessive levels of volatile organic compounds, like formaldehyde, which can cause eye, nose, and throat irritation and pose cancer risks (these compounds are emitted from new pressed wood materials, and in some other building materials and furnishings, especially in new or remodeled classrooms); although classrooms have individual control of HVAC systems, these systems are often noisy and are not continuously operated (causing large swings in both temperature and humidity levels, and allowing indoor air pollutant levels to build up); moisture problems are sometimes present in roofing, floors, walls, and exterior doors; operable windows are often small or absent; siting can be problematic relative to pollutant and noise sources, poor site drainage, and shading.

Energy

It is critical to manage and conserve natural resources in “High Performance Schools.” This can be done by reducing carbon dioxide emissions by using renewable energy resources; integration of concerns with design process; building siting and orientation; buildings shape; and landscaping; lighting, heating, cooling and ventilation sources. Integrated design can yield long and short-term savings. Reduced heat from an energy efficient lighting system and good natural ventilation designs can reduce the cooling demand, and thus the size and cost of the air conditioning units. All members of the design team should meet early on in the planning process and continue to coordinate integrated design concepts throughout the project in order to reduce energy costs.

The end result of integrated design is reduced overall energy consumption, thus saving construction costs through the downsizing of the systems and on-going costs of operation through reduced utility bills.
Many programs are available to help schools build energy-efficient facilities. Educate students about energy issues and to install renewable energy systems in schools. By taking advantage of these programs, schools can realize cost savings, better educate their students and help to ensure a cleaner, more stable environment for the future.

During the rush to construct new school buildings, districts often focus on short-term construction costs instead of long-term, life-cycle savings. The key to getting a high-performance school is to ask for an energy-efficient design in your request for proposals (RFP) and to select architects who are experienced in making sure that energy considerations are fully addressed in design and construction. Unless a school district directs its architect to design energy-efficient buildings, new schools may be as inefficient as old ones, or they may incorporate only modest energy efficiency measures.

Total construction costs for energy-efficient schools are often the same as costs for traditional schools, but most architects acknowledge a slight increase in the capital costs maybe necessary (as some energy efficient building features may cost more.) Efficient buildings have reduced building energy loads and take better advantage of local climate. A properly day lit school, for example, with reduced electrical lighting usage and energy efficient windows can permit downsized cooling equipment. Savings from this equipment helps defer costs of daylighting features. Even when construction costs are higher, resulting annual energy cost savings can pay for additional upfront capital costs quickly.

Older “cool” fluorescents had low quality of light that gives human skin a sickly bluish color. Newer fluorescent lights are both higher light quality and higher efficacy. Daylight, the highest quality of light, can help reduce energy use if the lighting system is properly integrated, with ambient light sensors and dimming mechanisms.

Daylighting

The design and construction of a school’s daylighting systems can cost more money. Properly day lit school (with associated reduced electrical lighting usage) can lead to downsized cooling equipment. The savings from this smaller equipment helps defer the costs of the daylighting features. Hiring an architect or engineering firm that is experienced in good daylighting design, especially in schools, will minimize any additional costs from the design end of a project. As with any building feature, effective daylighting requires good design.

Today’s window technology and proven design practices can ensure that daylighting does not cause distributive glare or temperature swings. Exterior overhangs and interior cloth baffles (hung in skylight wells) eliminate direct sunlight, while letting evenly distributed daylight into rooms. “Daylight” is in effect controlled “sunlight” manipulated to provide useful natural light to classroom activities. Moreover, daylight by nature produces less heat than that given off by artificial lighting.

The application of daylighting without control of sun penetration and/or without photo controls for electric lights can actually increase energy use. Design for daylighting utilizes many techniques to increase light gain while minimizing the heat gain, making it different from passive solar in a number of ways. First of all, the fenestration (or glazing) of the windows is different.  In a day lit building, the glazing is designed to let in the full spectrum of visible light, but block out both ultra violet and infrared light. Whereas, in a passive solar building, the fenestration allows for the full spectrum of light to enter the building (including UV and Infra red), but the windows are designed to trap the heat inside the building. In addition, in day lit rooms, it is undesirable to allow sunlight in through the window. Instead, it is important to capture ambient daylight, which is much more diffusing than sunlight, this is often achieved by blocking direct southern exposure, and optimizing shaded light and northern exposure. Passive solar maximizes south facing windows, and minimizes north-facing windows, thus increasing heat gain, and minimizing heat loss.

Water

As population growth increases demand for water increases. A “High Performance School” must reduce water consumption and use limited water resources wisely. This can be achieved by utilizing: water-efficient landscape techniques; water-efficient fixtures and controls in indoor and outdoor plumbing systems. The largest use of water in schools is in cooling and heating systems (evaporative cooling systems, single-pass cooling systems, etc.), kitchens, maintenance operations, landscaping irrigation, locker rooms, and restrooms. Good landscaping design including specifying native plants, proper spacing, and low-flow irrigation (that runs at night) will reduce a school’s water demand and expenditures.

High-efficiency irrigation technologies such as micro-irrigation, moisture sensors, or weather data-based controllers save water by reducing evaporation and operating only when needed. In urban areas, municipally supplied, reclaimed water is an available, less-expensive, and equally effective source for irrigation. The siting of a school and the shape of the land upon which is resides have tremendous impact on water resources. Selecting drought-tolerant plants will naturally lessen the requirement for water. In addition, using mulch around plants will help reduce evaporation, resulting in decreased need for watering plants or trees.

Drip irrigation systems with efficiencies of up to 95% rather conventional spray systems with efficiencies of only 50 to 60%.

The treatment of sewage is a costly process taken on by the local utility at the customer’s expense. The wastewater is typically treated and released back to the environment. Waste materials extracted from the wastewater must be further disposed of according to local codes. Considering on site water treatment will reduce the load on the local utility, offer an opportunity for students to learn about the biological and chemical processes involved in water treatment, and reduce operational expenses by avoiding a utility bill.

Greywater is water that has been used in sinks, drinking fountains, and showers. Black water is water that has been used in toilets. Greywater is fairly simple and safe to clean and reuse, whereas there are more health risks associated with black water.

Materials

“High Performance Schools” utilize material efficiency, which includes durable, reused, salvaged, and refurbished or recycled content. Recyclable materials manufactured using environmentally friendly practices.

Material efficiency can often save schools money by reducing the need to buy new materials and by reducing the amount of waste taken to the landfill. “high Performance Schools can reduce the amount of materials needed by: reusing onsite materials; eliminating waste created in the construction and demolition process; choosing materials that are safe, healthy, aesthetically pleasing, environmentally preferable, and contain low embodied energy.

Waste reduction planning is essential for school districts. These wastes represent a significant loss of natural resources and school district funds as well as a potential threat to student/staff health and the environment. To be responsible stewards of environmental quality, school districts should review new school construction, processes and operations, and even curriculum choices and evaluate the economic, educational, and environmental benefits of implementing effective waste reduction measures. Incorporating waste reduction as part of the school district’s overall way of doing business can provide a number of important benefits: reduced disposal costs; improved worker safety; reduced long-term liability; increased efficiency of school operations; and decreased associated purchasing costs.

Building materials may have a number of associated operating costs beyond the straightforward, initial capital costs. Proper selection is essential to minimize these secondary costs. Building materials may pose future health hazards, costing schools absentee time and lost student and faculty productivity. Consider the dangers of volatile organic compounds, dust, and moisture when selecting materials. Keeping these indoor pollutants at a minimum will ensure a healthy indoor environment and improve the learning environment.

Consider also the composition of the materials and how recyclable, durable, and refinishable they are. Keeping each of these characteristics in mind when selecting materials, the building will provide better service and reduce maintenance and operating costs. Source building materials from local distributors and save transportation energy costs if possible.

Transportation costs are sometimes referred to as part of a material’s embodied cost (and energy). Purchase building materials with low embodied costs such as local regional certified wood harvested from sustainable and well-managed forests. Onsite waste reduction and reuse during demolition and construction can save money by reducing amount of money spent at landfill, and by reducing initial amount of money spent on new materials.  Save on labor costs by providing a Construction and Demolition waste plans before starting operations and identifying where to recycle materials and what materials to salvage.

Community

The location where a “High Performance School” is constructed impacts the surrounding community. It can affect pedestrian and automobile traffic; quantity and quality of open space in the neighborhood; location within the community; and may be used as a tool to revitalize a community.

Once the school site is determined, the school’s design, construction, and use should be considered. Aspects such as the exterior design, amenities that it may provide and environmental design features can be a source of pride to the community. Schools can be a center for teaching and learning, and also add functional value within the community by providing access to facilities and play fields, and services such as after-school daycare and extended education.

High performance design for schools can be a selling point in bond elections because energy, indoor air quality, and other improvements translate to more comfortable classrooms for students, reduced energy bills, and lower operating and maintenance costs. Schools become healthier learning environments, reduce waste, and have less impact on the environment. Good indoor environmental quality has been proven to increase average daily attendance of students.

Faculty & Student Performance in High Performance Schools

Challenges include: tight budgets; an ever-increasing student enrollment; growing need for the renovation and building of many schools; higher expectation of faculty and student performance among these compelling circumstances. Sustainable schools can have a favorable impact on the school’s budget; help protect our environment; and encourage better performance of faculty and students as a result of a better learning environment.

“High Performance Schools” integrate today’s best technologies with architectural design strategies to achieve a better learning environment. These include: lighting – integration of daylighting and electrical lighting technologies; reduced noise levels by using acoustic materials and low-noise mechanical systems; healthy air quality, temperature, humidity levels – indoor air quality; thermal comfort; HVAC systems; low-emission materials; and reduce distractions and create environments where students and teachers can see and communicate with one another clearly and comfortably.

Commissioning

Without properly commissioning a school, many sustainable design elements can be compromised. In the American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline, The Commissioning Process is defined as follows: “The Commissioning Process is a quality-oriented process for achieving, verifying, and documenting that the performance of facilities, systems, and assemblies meet defined objectives and criteria. The Commissioning Process begins at project inception (during the pre-design phase) and continues for the life of the facility through the occupancy and operation phase. The commissioning process includes specific tasks to be conducted during each phase in order to verify that design, construction, and training meets the Owner’s Project Requirements.” By implementing a commissioning plan, a school can be sure that all of the systems function at optimum levels.

Facilities Performance Evaluation

Building and its systems are tested one year after completion and occupancy. Surveys are conducted to evaluate the satisfaction of occupants and maintenance and operations personnel. Alert school to system operational performance errors and potential hazards created by poorly operating systems. These problems can be corrected.

Data can be provided to school districts on what building attributes do and don’t work for their schools. Schools can develop guidelines and protocols that can help create better schools in the future.

Key Benefits of a High Performance School

Benefits include higher test scores, increased average daily attendance, increased teacher satisfaction and retention, reduced liability exposure, and sustainable school design.

Financing and incentives

Total construction costs for high performance schools are often the same as costs for conventional schools. Design costs may be slighting higher, but resulting capital and long-term operation costs can be lower. Properly designed day lit school with reduced electrical lighting usage can permit downsized cooling equipment. Even when construction costs are higher, resulting annual operational cost savings can pay for the additional upfront in a short period of time. High performance schools are falsely understood to be high-budget construction projects. Schools can find ways to finance a school beyond the State Allocation Board process. A collection of financial incentives in relation to energy, water, materials, siting, green building, landscaping and transportation from the Federal, State, Local, and Utility sectors may be available.

We would love to hear from you on what you think about this post.  We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.

 


Green Glass at Corning Museum

DSC_0002_MV_CNMVOHKWJXFE_cvppq6a4sedq DSC_0021_MV_GWYWIWYONJMI_yhmceocyxseh DSC_0045_MV_JUSCMHDIXUZZ_ptzsnas6bw8h DSC_0048_MV_VKZDNILBCSXM_cf91jvrkljb9 DSC_0059_MV_KRLACPVHRMSA_gxoe7n0i1ecq

The New York City practice Thomas Phifer and Partners have unveiled their design for the new 100,000 square foot North Wing expansion at the Corning Museum of Glass in Corning, New York. The state of the art, “energy smart” building will provide the ideal interior environment for preserving the Museum’s unparalleled collection of glass art through natural lighting, an intelligent building envelope and sophisticated temperature and air quality controls. The $64 million North Wing is scheduled for completion in 2014.

Included in the expansion will be a 26,000 square feet of gallery space. This is the largest space anywhere dedicated to the presentation of contemporary art in glass.

Environmentally Sustainable Design Elements:

  • Insulated double glazed windows with high performance, low-E coating to reduce heat gain
  • Daytime illumination provided by natural light
  • Daylight harvesting system
  • Carbon dioxide monitors control volume of outside air intake
  • Enthalpy wheel recovers heat from building exhaust
  • VAV controls track occupancy and system performance to reduce energy consumption
  • Water economizer uses cooling towers instead of chillers to produce cooling in winter for pumps
  • Multiple valves on cooling coils reduce energy required for dehumidification
  • Commissioning of building systems maximizes equipment efficiency
  • Facility personnel training improves long-term maintenance and operation
  • Design of storm water retention reduces run-off and erosion
  • Site lighting is designed to meet Dark Sky standards

Click here to read more about this exciting project!

This slideshow requires JavaScript.

We would love to hear from you on what you think about this post.  We sincerely appreciate all your comments.

If you like this post please share it with friends. And feel free to contact us if you would like to discuss ideas for your next project!

Sincerely,
Frank Cunha III
I Love My Architect – Facebook

FC3 ARCHITECTURE+DESIGN, LLC
P.O. Box 335, Hamburg, NJ 07419
e-mail: fcunha@fc3arch.com
mobile: 201.681.3551
direct: 973.970.3551
fax: 973.718.4641
web: http://fc3arch.com
Licensed in NJ, NY, PA, DE, CT.